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ELECTRONICS: ELECTRONICS: MooreMoore’’ss Law ScalingLaw Scaling
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Volume economics Volume economics –– faster, better, cheaper faster, better, cheaper 
Integration & increased functionality Integration & increased functionality 
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Industry standard silicon manufacturing processes could Industry standard silicon manufacturing processes could 
enable integration, bring volume economics to optical.enable integration, bring volume economics to optical.

The Opportunity of Silicon PhotonicsThe Opportunity of Silicon Photonics

Take advantage of enormous ($ billions) CMOS Take advantage of enormous ($ billions) CMOS 
infrastructure, process learning, and capacity infrastructure, process learning, and capacity 
–– Available tools: litho requirements typically >90nm Available tools: litho requirements typically >90nm 
–– Draft continued investment going forwardDraft continued investment going forward

Potential to integrate multiple optical devices Potential to integrate multiple optical devices 
Micromachining could provide smart  packagingMicromachining could provide smart  packaging
Potential to converge computing & communicationsPotential to converge computing & communications

Industry standard silicon manufacturing processes could Industry standard silicon manufacturing processes could 
enable integration, bring enable integration, bring ““volume economicsvolume economics”” to optical.to optical.

To benefit from existing infrastructure optical wafers To benefit from existing infrastructure optical wafers mustmust run run 
alongside product.. alongside product.. i.ei.e CMOS fabrication compatible..CMOS fabrication compatible..
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Today's High Speed InterconnectsToday's High Speed Interconnects

Chip to ChipChip to Chip
1 1 –– 50 cm50 cm

Board to BoardBoard to Board
50 50 –– 100 cm100 cm

1 to 100 m1 to 100 m

Rack to Rack to 
RackRack

0.1 0.1 –– 80 km80 km

Metro &Metro &
Long HaulLong Haul

Decreasing DistancesDecreasing Distances→→

PrimarilyPrimarily
OpticalOptical

Primarily Primarily 
CopperCopper

Need to drive volume economics to drive optical Need to drive volume economics to drive optical 
closer to chipcloser to chip

BillionsBillions

MillionsMillions

ThousandsThousands

Volum
es

Volum
es
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Copper Approaching LimitsCopper Approaching Limits
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Eye ClosesEye Closes

4040

Simulation of  20Simulation of  20”” channel transmitter w/ equalizationchannel transmitter w/ equalization

Copper scaling more challenging.Copper scaling more challenging.
Headroom getting squeezed.Headroom getting squeezed.

Low LossLow Loss
Ro4350Ro4350

18G18G

Howard Heck
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2010+2010+20052005

ChipChip--ChipChip
Distance: Distance: 
11--50cm50cm

BoardBoard--BoardBoard
Distance: Distance: 
5050--100cm100cm

RackRack--RackRack
Distance: Distance: 
11--100m100m

EnterpriseEnterprise
Distance:Distance:
0.10.1--10km10km

OPTICALOPTICAL

Electrical to Optical Electrical to Optical 

ELECTRICALELECTRICAL

3.125G                   10G 3.125G                   10G 40G40G

3.125G                  53.125G                  5--6G6G 10G10G 20G20G

3.125G                  53.125G                  5--6G6G 10G10G 1515--20G20G

10G 10G >= 40G>= 40G

Copper Tech
Transition Zone

Transition Zone

Silicon 
Photonics?

Optical Tech  

Transition driven by cost
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The Photonic DilemmaThe Photonic Dilemma

Fiber has much more bandwidth than copperFiber has much more bandwidth than copper

However, it is much more expensiveHowever, it is much more expensive……....
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Photonics:Photonics: The technology of emission, transmission, The technology of emission, transmission, 
control and detection of light (photons) aka fibercontrol and detection of light (photons) aka fiber--

optics & optooptics & opto--electronicselectronics

Today:Today: Most photonic devices made with exotic Most photonic devices made with exotic 
materials, expensive processing, complex packagingmaterials, expensive processing, complex packaging

Silicon Photonics Vision:Silicon Photonics Vision: Research effort to develop Research effort to develop 
photonic devices using silicon as base material and photonic devices using silicon as base material and 

do this using standard, high volume silicon do this using standard, high volume silicon 
manufacturing techniques in existing fabsmanufacturing techniques in existing fabs

Benefit: Bring volume economics to optical communicationsBenefit: Bring volume economics to optical communications
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Agenda Agenda 
Opportunity for Silicon PhotonicsOpportunity for Silicon Photonics
Copper Copper vsvs optical  optical  
Recent advancesRecent advances
IntelsIntels SP ResearchSP Research
Recent resultsRecent results
–– IntelIntel’’s Silicon Laser**s Silicon Laser**

SummarySummary
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++ Transparent in 1.3Transparent in 1.3--1.6 1.6 µµm regionm region

++ CMOS fabrication compatibility CMOS fabrication compatibility 

++ Low costLow cost

++ HighHigh--index contrast index contrast –– small footprintsmall footprint

Silicon ProSilicon Pro’’s and Conss and Cons

−− No electroNo electro--optic effectoptic effect

−− No detection in 1.3No detection in 1.3--1.6 1.6 µµm regionm region

−− High index contrast High index contrast –– coupling coupling 

−− Lacks efficient light emission Lacks efficient light emission 

Silicon will not win with passive devices.. 
Must produce active devices that add  functionality
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Silicon Silicon PhotonicsPhotonics Breakthroughs Breakthroughs 
Are AcceleratingAre Accelerating

Low Loss Low Loss 
StripStrip

MITMIT

2004200320022001

PBG WGPBG WG
<25dB/cm<25dB/cm

IBMIBM

Modeled GHz Modeled GHz 
PIN PIN 

ModulatorModulator
Surrey, NaplesSurrey, Naples

Raman Raman λ λ ConversionConversion
UCLAUCLA

Progress In Recent Years Is Accelerating Progress In Recent Years Is Accelerating 
still not therestill not there……

Raman Net Pulsed GainRaman Net Pulsed Gain
9/6:  Intel9/6:  Intel

9/20: Cornell9/20: Cornell
9/29: UCLA 9/29: UCLA 
9/29: CUHK9/29: CUHK

GHz MOS GHz MOS 
ModulatorModulator

IntelIntel

PBG WGPBG WG
<7dB/cm<7dB/cm

IBM, FESTA, NTTIBM, FESTA, NTT

30GHz 30GHz SiGeSiGe
PhotodetectorPhotodetector

IBMIBM

SRS SRS 
UCLAUCLA

SiSi LEDsLEDs
STM, STM, TrentoTrento

IntegratedIntegrated
APD+TIAAPD+TIA

UTUT

Inverted Inverted 
TaperTaper

NTT, CornelNTT, Cornel

CW Raman 
lasing 
Feb 05



*Third party marks and brands are the property of their respecti*Third party marks and brands are the property of their respective ownerve owner 1313

Agenda Agenda 
Opportunity for Silicon PhotonicsOpportunity for Silicon Photonics
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Recent advancesRecent advances
IntelIntel’’s SP Researchs SP Research
Recent resultsRecent results
–– IntelIntel’’s Silicon Laser**s Silicon Laser**

SummarySummary
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FirstFirst
Continuous Continuous 
Silicon LaserSilicon Laser

(Nature 2/17/05)(Nature 2/17/05)

1GHz 1GHz (Nature (Nature ‘‘04)04)

4 Gb/s 4 Gb/s ((‘‘05)05)

1) Light Source1) Light Source

4)  Photo4)  Photo--detectiondetection

3) Modulation3) Modulation2) Guide Light2) Guide Light

6)  Intelligence6)  Intelligence5) Low Cost Assembly5) Low Cost Assembly
Passive Passive 
AlignAlign

CMOSCMOSCMOSCMOS

Mirror

Waveguides devicesWaveguides devices

SiGeSiGe PhotodetectorsPhotodetectors

IntelIntel’’s Silicon Photonics Researchs Silicon Photonics Research

1. Develop photonic building blocks in silicon1. Develop photonic building blocks in silicon

First Prove that silicon is viable material for photonicsFirst Prove that silicon is viable material for photonics
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PackagingPackaging

DeviceDevice
1/31/3

PackagingPackaging
1/31/3

TestingTesting
1/31/3

In addition to device costs, packaging and testing costs In addition to device costs, packaging and testing costs 
must drop with to enable high volume photonicsmust drop with to enable high volume photonics

Approximate Optical Product Cost BreakdownApproximate Optical Product Cost Breakdown
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Micromachining for PackagingMicromachining for Packaging
Use standard pick and place technologies alongUse standard pick and place technologies along

with litho defined silicon microwith litho defined silicon micro--machiningmachining

VV--GroovesGrooves

UU--GroovesGrooves

4545°° MirrorsMirrors

TapersTapers

Laser AttachLaser Attach

Facet PreparationFacet Preparation

MirrorMirror
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IntelIntel’’s Silicon Photonics Researchs Silicon Photonics Research

1. Develop photonic building blocks in silicon1. Develop photonic building blocks in silicon

2. Integrate increasing functionality directly onto silicon 2. Integrate increasing functionality directly onto silicon 

DEMUXDEMUX

MUXMUX

DriverDriver
ChipChip

ReceiverReceiver
ChipChip

LasersLasers

PhotodetectorsPhotodetectors

TaperTaper

PassivePassive
AlignAlign

Integrated in SiliconIntegrated in Silicon



*Third party marks and brands are the property of their respecti*Third party marks and brands are the property of their respective ownerve owner 1818

IntelIntel’’s Silicon Photonics Researchs Silicon Photonics Research

1. Develop photonic building blocks in silicon1. Develop photonic building blocks in silicon

2. Integrate increasing functionality directly onto silicon 2. Integrate increasing functionality directly onto silicon 

3. Long term explore monolithic integration3. Long term explore monolithic integration

TIATIA

TIATIA

DriversDrivers

TIATIA

TIATIA

DriversDrivers

CMOSCMOS
CircuitryCircuitry

PhotodetectorPhotodetector

PassivePassive
AlignmentAlignment

ModulatorModulator
ECLECL

FilterFilter MultipleMultiple
ChannelsChannels
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SILICON LASERSILICON LASER
What  we  announced on Feb 17What  we  announced on Feb 17thth
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The First LaserThe First Laser

Fully
Reflective

Mirror

Partially
Reflective

Mirror

Developed by  Ted Developed by  Ted MaimanMaiman, , published in published in NatureNature, August 6, 1960., August 6, 1960.
this ruby laser used a flash lamp as an optical pump this ruby laser used a flash lamp as an optical pump 

RUBY CRYSTAL ROD

LASER
BEAM

Flash Lamp
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Raman:  Raman:  (Historical Note)(Historical Note)
Raman Effect  or Raman Scattering: A phenomenon observed in the scattering of light as

it passes through a transparent medium; the light undergoes a change in frequency 
and random alteration in phase due to a change in rotational or vibrational energy of 
the scattering molecules.

• Discovered a material effect that is named after him
•Nature published his paper on the effect on March 31, 1928
•He received the Nobel prize in 1930 for his discovery

• The first laser using the Raman effect was built in 1962
• Today Raman based amplifiers are used throughout telecom

• Most long distance phone calls will go through a Raman amplifier

Typical Raman AmplifierTypical Raman Amplifier
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The Raman EffectThe Raman Effect

00 100001000050005000 1500015000 2000020000
Glass Fiber (Raman lasers/amps)Glass Fiber (Raman lasers/amps)
DiamondDiamond
Lithium Niobate (used for modulators) Lithium Niobate (used for modulators) 
QuartzQuartz
Indium Indium AntimonideAntimonide (III(III--V)V)
SiliconSilicon

MaterialsMaterials Raman gain coefficient (10Raman gain coefficient (10--88m/MW)m/MW)

The Raman effect is 10,000 times The Raman effect is 10,000 times 
stronger in silicon than in glass stronger in silicon than in glass 
fiberfiber

This allows for significant gain in This allows for significant gain in 
centimeters instead of kilometerscentimeters instead of kilometers

Kilometers of fiberKilometers of fiber

Centimeters of siliconCentimeters of silicon

. . .. . .

Fabrication of low-loss silicon waveguides is challenging
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Raman Gain in SiliconGain in Silicon
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Two Photon AbsorptionTwo Photon Absorption

e

ee

e Free Free 
ElectronElectron

In silicon, one infrared photon doesn't have the energy to free In silicon, one infrared photon doesn't have the energy to free an electronan electron

But, occasionally, But, occasionally, twotwo photons can knock an electron out of orbit.photons can knock an electron out of orbit.

Free electrons Free electrons absorb individual photons and cancel Raman gainabsorb individual photons and cancel Raman gain

e

SILICON WAVEGUIDE

e

e e

e
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Overcoming TPA induced FCAOvercoming TPA induced FCA
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electrons
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Gain needed to make a laser
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Effective Carrier lifetime reductionEffective Carrier lifetime reduction
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SiO2 passivation
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Si substrate

Buried oxide
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Al contact Al contact
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PIN Cross-section
TPA coeff ~ 0.5 cm/GW, α 0.39 dB/cm, 
FCA  cross sect 1.45e-17 cm^2 @ 1550 nm.
The lifetime is used as a fitting parameter 
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CW gain vs. reverse bias voltageCW gain vs. reverse bias voltage
WG= ~1.5um by 1.5umWG= ~1.5um by 1.5um

NO NET GAIN

NET GAIN

Pump Pump λλ=1550 nm     Signal =1550 nm     Signal λλ=1686 nm=1686 nm
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With gain can build Laser: With gain can build Laser: 
Silicon Waveguide CavitySilicon Waveguide Cavity

Laser output

Pump beam SOI rib waveguide

Rf Rb

p-region

n-regionV bias

Dichroic
coating

Broad-band
reflective
coating

16 mm

2 
m

m

24%/71% 90%



*Third party marks and brands are the property of their respecti*Third party marks and brands are the property of their respective ownerve owner 2929

Experimental setupExperimental setup
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Laser chip

Experimental Set up
Test chip with 8 laser WG’s
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Typical Lasing CriteriaTypical Lasing Criteria

•Threshold behavior:
rapid growth in output power when gain > loss

•Spectral linewidth narrowing: 
Coherent light emission 
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Laser turns on at threshold, when gain per pass in Laser turns on at threshold, when gain per pass in 
cavity becomes greater than the loss.cavity becomes greater than the loss.
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Spontaneous emission vs. laser spectrumSpontaneous emission vs. laser spectrum

When lasing, the spectrum becomes When lasing, the spectrum becomes 
much more narrow and much higher in much more narrow and much higher in 

power.power.
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Wavelength tuning (comparison))

-80

-70

-60

-50

-40

-30

-20

-10

0

1680 1685 1690 1695 1700

Laser wavelength (nm)

Sp
ac

tr
al

 p
ow

er
 (d

B
)

1548 nm
1550 nm
1552 nm
1554 nm
1556 nm
1558 nm

Silicon Raman laser Commercial  ECDL

-80

-70

-60

-50

-40

-30

-20

-10

0

1542 1547 1552 1557 1562

Laser wavelength (nm)

Sp
ac

tr
al

 p
ow

er
 (d

B
)

1548 nm
1550 nm
1552 nm
1554 nm
1556 nm
1558 nm

pump



*Third party marks and brands are the property of their respecti*Third party marks and brands are the property of their respective ownerve owner 3535

Potential ApplicationsPotential Applications
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Communications ApplicationsCommunications Applications

PUMP
LASER passively aligned

amplified
data beam

silicon waveguide (cm’s)

101110 101110

waveguide couplerweak
data beam

SiSi RamanRaman
AmplifierAmplifier

PUMP
LASER

MOD

MOD

MOD

MOD

modulators

passively 
aligned

laser cavity

splitter

Optical
Fiber

MUX

integrated mirrors

SiSi MultiMulti--ChannelChannel
TransmitterTransmitter

N

P

SiSi Raman ModulatorRaman Modulator
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Covering the Gaps  Covering the Gaps  

2.12.1µµm m Ho:YAGHo:YAG laserlaser

PUMP
LASER

cascaded mirrors

•• Different wavelengths require different types of lasersDifferent wavelengths require different types of lasers
•• MidMid--Infrared very difficult for compact semiconductorsInfrared very difficult for compact semiconductors
•• Raman Lasers could enable lasers at these wavelengths Raman Lasers could enable lasers at these wavelengths 
•• Applications in sensing, analysis, medicine,Applications in sensing, analysis, medicine, and othersand others

CompactCompact
Semi. LasersSemi. Lasers

Could enable lasers for a variety of applicationsCould enable lasers for a variety of applications

>2>2µµmm
2.92.9µµm m Er:YAGEr:YAG laserlaser
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Silicon will not win with individual devices, but with integrateSilicon will not win with individual devices, but with integrated d 
modules that bring increased total functionality & intelligence modules that bring increased total functionality & intelligence at at 

a lower costa lower cost

SummarySummary
Long term true convergence opportunities are with siliconLong term true convergence opportunities are with silicon
B/W will continue drive conversion of optical into B/W will continue drive conversion of optical into 
interconnectsinterconnects
Tremendous progress from research communityTremendous progress from research community

Need to continue pushing & improving performanceNeed to continue pushing & improving performance
Research breakthrough with CW silicon laserResearch breakthrough with CW silicon laser
Integration is next set of challengesIntegration is next set of challenges
In order to benefit Technologies must be CMOS fabrication In order to benefit Technologies must be CMOS fabrication 
compatible to benefit from HVM  &  infrastructurecompatible to benefit from HVM  &  infrastructure
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BACKUP
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Photonic Integration:Photonic Integration:
Reduction in interfaces Reduction in interfaces –– lower losslower loss
Reduction in sizeReduction in size
Simpler assembly, testing, packagingSimpler assembly, testing, packaging
CostCost

Benefits of IntegrationBenefits of Integration

Optoelectronic IntegrationOptoelectronic Integration::
Reduce Reduce parasiticsparasitics, improved high, improved high--freq performancefreq performance
Further size, testing, packaging reductions Further size, testing, packaging reductions 

?? CostCost
Integration is only useful if integrated device has benefit 
(functionality, cost, performance) over discrete devices
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CMOS Integration ChallengesCMOS Integration Challenges

–– Film topologyFilm topology
–– Coupling to fiberCoupling to fiber
–– Contaminating the Contaminating the fabfab
–– Yield metrologyYield metrology
–– Thermal budgetsThermal budgets
–– Heat dissipationHeat dissipation
–– Complexity / yieldComplexity / yield

OptoelectronicOptoelectronic
IntegrationIntegration

To benefit from existing infrastructure optical wafers must run 
alongside product, introducing additional pragmatic challenges 
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Transistor
on 90nm

Surface  Topology: Litho Surface  Topology: Litho vsvs DOFDOF

0.090.090.180.180.250.25

0.5 0.5 µµmm 0.350.35µµmm 0.20.2µµmm

DOF vs. LithoDOF vs. Litho
Technology (Technology (µµm)m)

For 0.18For 0.18µµm and better, topology exceeds DOFm and better, topology exceeds DOF
New New planarizationplanarization techniques required for advanced lithotechniques required for advanced litho

0.1µm gate

0.30.3µµmm
StripStrip

0.90.9µµmm
RibRib

8µm
Taper

•• Depth of focus (DOF) shrinks as litho improves Depth of focus (DOF) shrinks as litho improves 

•• Many optical devices are much taller than transistorsMany optical devices are much taller than transistors
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Fiber Coupling Fiber Coupling 

Getting light from fibers into silicon waveguides 
will require couplers. For certain structures litho 

and etch parameters must be carefully controlled.

Taper from (W x H): Taper from (W x H): 
10 x 8 10 x 8 µµm to 2.5 x 2.3 m to 2.5 x 2.3 µµmm
Assume zero roughnessAssume zero roughness
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 Tip=0.5
 Tip=1.0
 Tip=2.0

•• Coupling from standard fiber Coupling from standard fiber 
to to SiSi waveguides requires special waveguides requires special 
structures (tapers, gratings, etc).structures (tapers, gratings, etc).

2dB
1dB

Source: IntelSource: Intel

•• For wedge tapers, etch angle as well For wedge tapers, etch angle as well 
as the tip lithography impact loss. as the tip lithography impact loss. 

•• Sidewall roughness is also a factor Sidewall roughness is also a factor 
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To truly gain from HVM processing, automated & 
non-destructive techniques for probing optical 
devices at the wafer level must be developed 

• CMOS CMOS fabsfabs monitor thousands of parameters across wafer in line   monitor thousands of parameters across wafer in line   
•• Tight control Tight control –– e.g. CMOS gate width held to 10e.g. CMOS gate width held to 10’’s of angstromss of angstroms
•• Significant perSignificant per--wafer cost savingswafer cost savings from screening out yield early from screening out yield early 

Yield MetrologyYield Metrology

•• InIn--line wafer level optical probing is very immature line wafer level optical probing is very immature 
•• Most optical device testing is performed after wafer dicingMost optical device testing is performed after wafer dicing
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OptoOpto--Electronic Integration (cont)Electronic Integration (cont)

Thermal:
For optoelectronic integration , optical devices 

must tolerate heat generated by CMOS circuits.
Core

Core

Other Logic

Core

Core

Cache

IO Pads

IO Pads

Core

Core

Other Logic

Core

Core

Cache

IO Pads

IO Pads

Core

Core

Other Logic

Core

Core

Cache

IO Pads

IO Pads

80-85
75-80
70-75
65-70
60-65

Temp °C
Simulated multiSimulated multi--core thermal mapcore thermal map

Process compatibility:
@ 10Gb/s CMOS IC’s need 90nm technology
Silicon Photonic  devices may only need ~.25um

Yield:
Typical industry IC yields are high, but the process windows 
are extremely tight.
Tweaks to enable opto-electronic integration may effect  IC yield

Trade off of yield and process compexity will determine if  
opto-electrical integration valuable
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AnimationAnimation
Click in box while in slide show mode to startClick in box while in slide show mode to start

Click outside animation box after animationClick outside animation box after animation
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Extending and Expanding MooreExtending and Expanding Moore’’s Laws Law

SSISSISSI LSILSI VLSIVLSIDiscreteDiscrete

WirelessWireless

OpticalOptical

BiologicalBiological

SensorsSensors

FluidicsFluidics

MechanicalMechanical

EXTENDINGEXTENDING
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Two Photon Absorption in Silicon

Silicon
band gap
1.1 eV

Pump
λ=1.55µm

Valence band

Conduction band

Two photons can simultaneously hit an atom
Combined energy enough to kick free an electron


