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* Opportunity for Silicon Photonics
«Copper vs optical

* Recent advances

*Intels SP Research

* Recent results
—Intel’s Silicon Laser

sSummary
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ELECTRONICS: Moore's Law Scaling
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Integration & increased functionality
Volume economics — faster, better, cheaper
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The Opportunity of Silicon Photonics

» Take advantage of enormous ($ billions) CMOS
infrastructure, process learning, and capacity

— Available tools: litho requirements typically >90nm
— Draft continued investment going forward

* Potential to integrate multiple optical devices
» Micromachining could: provide smart packaging
* Potential to converge computing & communications

4 )

To benefit from existing infrastructure optical wafers must run

L alongside product.. i.e CMOS fabrication compatible.. )

]
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Today's High Speed Interconnects
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[Need to drive volume economics to drive optical]
closer to chip

]
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" Copper Approaching Limits

Simulation of 20” channel transmitter w/ equalization
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Copper scaling more challenging.
Headroom getting squeezed.

. Howard Heck
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ine Photonic Dilemma

*Fiber has much more bandwidth than copper

*However; it is much more expensive.....
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Photonics: The technology of emission, transmission,
control and detection of light (photons) aka fiber-
optics & opto-electronics

Today: Most photonic devices made with exotic
materials, expensive processing, complex packaging

Silicon Photonics Vision: Research effort to develop
photonic devices using silicon as base material and
do this using standard, high volume silicon
manufacturing techniques in existing fabs

_—? i

Be:iefit: Bring volume economics, to optical communigations
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* Opportunity for Silicon Photonics
«Copper vs optical

* Recent advances

*Intels SP Research

* Recent results
—Intel’s Silicon Laser**

sSummary
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Transparent in 1.3-1.6 pm region
CMOS fabrication compatibility

Low cost

b o

High-index contrast — small footprint
® ,

No electro-optic effect

No'detection in 1.3-1.6 pm region
High index contrast — coupling

Lacks efficient light emission

Silicon will not win with passive devices..
Must produce active devices that add functionality
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* Opportunity for Silicon Photonics
«Copper vs optical

* Recent advances

*Intel’s SP' Research

*Recent results
—Intel’s Silicon Laser**

sSummary
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1. Develop photonic building blocks in silicon

[ntel’sSilicon Photonics Research

1) Light Source .' 2) Guide Light

cSmm——s

——

= Waveguides devices
First 4) Photo-detection 5) Low Cost Assembly
Continuous Passive. 3
i Align
Silicon Laser

(Nature 2/17/05) ’f

SiGe'Photodetectors

1GHz (Nature ‘04)
4 Gb/s (05

r|E|rst Prove:that silicon is viable material for photonics
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Approximate Optical Product Cost Breakdown

Packaging

1/3
Device
1/3
Testing
1/3

In addition to device costs, packaging and testing costs
must drop with to enable high volume photonics

]
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1. Develop photonic building blocks In silicon

2. Integrate increasing functionality directly onto silicon

Integrated. in Silicon

Receiver
Chip

]
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1. Develop photonic building blocks In silicon
2. Integrate increasing functionality directly onto silicon

3. Long term explore monolithic integration

ECL

- Modulator
A A T L S Multiple
Pl ., <55 Channels

Photodetector
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InerrstLaser

Developed by Ted Maiman, published.in Nature, August 6, 1960.
this ruby.laser used aifiashiampiasianiopticalipump

. . Partially
Reflective Flash Lamp Reflective
Mirror Mirror
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Raman Effect or Raman Scattering: A phenomenon observed in the scattering of light a
it passes through a transparent medium; the light undergoes a change in frequency
and random alteration in phase due to a change in rotational or vibrational energy of

the scattering molecules.
» Discovered a material effect that is named after him
*Nature published his paper on the effect on March 31, 1928
*He received the Nobel prize in 1930 for his discovery

« The first laser using the Raman effect was built in 1962
» Today Raman based amplifiers are used throughout telecom

* Most long distance phone calls will go through a Raman amplifier

-

] .ﬁlcal.Raman.Amphﬂer

]
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Ihe kamanikfiect

Materials

Silicon
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Glass Fiber (Ramani!
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L Ailomsiesioiil . engeransilicon than in glass

o—o Ennmetersinstead of kilometers

Cantimeatars of silicor)




Silicon Waveguide

Pump in/ - Pump out Pump/probe
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TWo Bhoton' Absorption

In silicon, one infrared photon doesn't have the energy to free an electron

SILICON WAVEGUIDE

But, occasionally, two photons can knock an|electron out of orbit.

Free electrons absorb) individual photens and cancel fRaman gain

]
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SiO, passivation - — Lifetime=16 ns
— Lifetime=6.8 ns
oo oo\ —— Lifetime=3.2 ns
Al contact  Si rib waveguide Al contact [N 4001— Lifetime=1 ns
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PIN Cross-section
TPA coeff ~ 0.5 cm/GW, o 0.39 dB/cm,
FCA cross sect 1.45e-17 cm”*2 @ 1550 nm.
The lifetime is used as a fitting parameter
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GW gain vs. reverse hias voltage
WG=~1.5um hy 1.5um
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Pump power monitor Silicon

Lensed :
- Polarization fibre waveguide
FumD & controller De-multiplexer

1,550 nm -

— =

Tap coupler Il Laser

Optical
spectrum
analyzer

output at Dichroic High
LP filter 1.686 nm coating reflection
coating

Laser output Tap coupler
power meter
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Experlmental Set up

Test chip with 8 laser WG’s

]
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Typical’lasing Griteria

*Threshold behavior:
» rapid growth in output power when gain > loss

*Spectral linewidth narrowing:
» Coherent light emission
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Threshold, Efficiency, and PIN efiect
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Laser turns on at threshold, when gain per pass in
cavity becomes greater than the loss.
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—— Lasing signal

—— Spontaneous
emmission

Magnified

-
=
s
S
o
3
o
Q.
o
=7
(8]
O
Q.
n

1668.5 1669 1669.5 1670 1670.5
Wavelength (nm)

When lasing, the spectrum becomes
much more narrow and much higher In
power.
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P

- Communications Applications

y

PUMP

LASER Si Raman
i Amplifier
"&I |
 weak ~ amplified
data beam - data beam
silicon waveguide (cm’s) Si Multi-Channel

Transmitter

laser cavity modulators

Optical
Fiber

Si'Raman Modulator

integrated mirrors

]
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* Different wavelengths require different types of lasers

» Mid-Infrared very difficult for compact semiconductors
 Raman Lasers could enable lasers at these wavelengths
» Applications in sensing, analysis, medicine, and others

Compact rovaa

2. 1um Ho:YAG laser: N2 Semi Lasers
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Could enable lasers for a variety of applications
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stimmany

Long term true convergence opportunities are with silicon

B/W:will continue drive conversion of optical into
interconnects

Tremendous progress from research community

»Need to continue pushing & improving performance
Research breakthrough with CW silicon laser
Integration is next set of challenges

In order to benefit Technologies must be CMOS fabrication
compatible to benefit from HVM & infrastructure

[ Silicon will not win with individual devices, but with integrated 1

modules that bring increased total functionality & intelligence at
a lower cost

]
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* Photonic Integration:
v/ Reduction in interfaces — lower loss
v'Reduction in size

v-:Simpler:assembly, testing, packaging
v Cost

sOptoelectronic Integration:
v'Reduce parasitics, improved high-freq performance

v Further size, testing, packaging reductions
2 Cost

Integration is only useful if integrated device has benefit
(functionality, cost, performance) over discrete devices
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GMOS integration Ghallenges

— Film topology.

— Coupling to fiber

— Contaminating the fab
— Yield metrology

— Thermal budgets

Optoelectronic

— Heat dissipation - _
Integration

— Complexity / yield

To benefit from existing infrastructure optical wafers must run
alongside product, introducing additional pragmatic challenges

]
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Surface Topolooy: Lithows DOF

* Depth of focus (DOF) shrinks as litho improves

~ +» Many optical devices are much taller than transistors

For 0.18um and better, topology exceeds DOF
New planarization techniques required for advanced litho

DOF vs. Litho
Technology-(jam)

0.25

Transistor
0.18 on 90nm

0.1um gate
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Fiber Goupling
Taper from (W x H): 4

10 x 8 um.to; 2.5:x 2.3 [im N
Assume. zero roughness

» Coupling from standard fiber
to Si waveguides requires special
structures (tapers, gratings, etc).

—
m
©
~
(2]}
[0}
o
—
o
Q
©
l—

* For wedge tapers, etch angle as well
as the tip lithography impact loss.

Sidewall angle (degrees) » Sidewall roughness is also a factor

Source: Intel

Getting light from fibers into silicon waveguides
will require couplers. For certain structures litho
and etch parameters must be carefully controlled.

]
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Yieln'vetrology

« CMOS fabs monitor thousands of parameters across wafer in line
- Tight control— e.g. CMOS, gate width held to 10’s of angstroms
. » Significant per-wafer cost savings from screening out yield early

* In-line wafer level optical probing is very immature
» Most optical device testing is performed after wafer dicing

/

To truly gain from HVM processing, automated &
non-destructive techniques for probing optical
devices at the wafer level must be developed
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Opto-Electronic Integration (cont)

Thermal: Simulated multi-core thermal map
Temp °C

For optoelectronic integration , optical devices
- must tolerate heat generated by CMOS circuits. " f
Process compatibility:

@ 10Gb/s CMOS IC’s need 90nm technology
Silicon Photonic devices may only need ~.25um

Yield:

Typical industry IC yields are high, but the process windows
are extremely tight.
Tweaks to enable opto-electronic integration may effect IC yield

Trade off of yield and process compexity will determine if
opto-electrical integration valuable

]
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' Two Photon Absorption in Silicon

Conduction band

_______ e =
S A
Pump e Rae ©
A=1.55um
A e

Valence band

Silicon
band gap
1.1eV

Two photons can simultaneously hit an atom
Combined energy enough to kick free an electron
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