
Full View Print

Intel's Haswell Architecture Analyzed: Building a New PC and a New Intel

by Anand Lal Shimpi on 10/5/2012 2:45:00 AM
Posted in CPUs , Intel , Haswell

Atom was originally developed not to deal with ARM but to usher in a new type of ultra mobile device. That obviously
didn't happen. UMPCs failed, netbooks were a temporary distraction (albeit profitable for Intel) and a new generation of
smartphones and tablets became the new face of mobile computing. While Atom will continue to play in the ultra mobile
space, Haswell marks the beginning of something new. Rather than send its second string player into battle, Intel is
starting to prep its star for ultra mobile work.

Haswell is so much more than just another new microprocessor architecture from Intel. For years Intel has enjoyed a
wonderful position in the market. With its long term viability threatened, Haswell is the first step of a long term solution to
the ARM problem. While Atom was the first "fast-enough" x86 micro-architecture from Intel, Haswell takes a different
approach to the problem. Rather than working from the bottom up, Haswell is Intel's attempt to take its best micro-
architecture and drive power as low as possible.

Read on for our full analysis of both Haswell as a microprocessor architecture and as a ultra mobile platform.

Page 1

When I first started writing about x86 CPUs Intel was on the verge of entering the enterprise space with its processors. At
the time, Xeon was a new brand, unproven in the market. But it highlighted a key change in Intel's strategy for dominance:
leverage consumer microprocessor sales to help support your fabs while making huge margins on lower volume,

http://www.anandtech.com/show/6355/intels-haswell-architecture
http://www.anandtech.com/tag/haswell
http://www.anandtech.com/tag/intel
http://www.anandtech.com/tag/cpus
javascript:print();
http://images.anandtech.com/doci/6290/Intel%204th%20Gen.JPG

enterprise parts. In other words, get your volume from the mainstream but make your money in the enterprise. Intel
managed to double dip and make money on both ends, it just made substantially more in servers.

Today Intel's magic formula is being threatened. Within 8 years many expect all mainstream computing to move to
smartphones, or whatever other ultra portable form factor computing device we're carrying around at that point. To put it in
perspective, you'll be able to get something faster than an Ivy Bridge Ultrabook or MacBook Air, in something the size of
your smartphone, in fewer than 8 years. The problem from Intel's perspective is that it has no foothold in the smartphone
market. Although Medfield is finally shipping, the vast majority of smartphones sold feature ARM based SoCs. If all
mainstream client computing moves to smartphones, and Intel doesn't take a dominant portion of the smartphone market,
it will be left in the difficult position of having to support fabs that no longer run at the same capacity levels they once did.
Without the volume it would become difficult to continue to support the fab business. And without the mainstream volume
driving the fabs it would be difficult to continue to support the enterprise business. Intel wouldn't go away, but Wall Street
wouldn't be happy. There's a good reason investors have been reaching out to any and everyone to try and get a handle
on what is going to happen in the Intel v ARM race.

To make matters worse, there's trouble in paradise. When Apple dropped PowerPC for Intel's architectures back in 2005 I
thought the move made tremendous sense. Intel needed a partner that was willing to push the envelope rather than
remain content with the status quo. The results of that partnership have been tremendous for both parties. Apple moved
aggressively into ultraportables with the MacBook Air, aided by Intel accelerating its small form factor chip packaging
roadmap and delivering specially binned low leakage parts. On the flip side, Intel had a very important customer that
pushed it to do much better in the graphics department. If you think the current crop of Intel processor graphics aren't
enough, you should've seen what Intel originally planned to bring to market prior to receiving feedback from Apple and
others. What once was the perfect relationship, is now on rocky ground.

The A6 SoC in Apple's iPhone 5 features the company's first internally designed CPU core. When one of your best
customers is dabbling in building CPUs of its own, there's reason to worry. In fact, Apple already makes the bulk of its
revenues from ARM based devices. In many ways Apple has been a leading indicator for where the rest of the PC
industry is going (shipping SSDs by default, moving to ultra portables as mainstream computers, etc...). There's even
more reason to worry if the post-Steve Apple/Intel relationship has fallen on tough times. While I don't share Charlie's view
of Apple dropping Intel as being a done deal, I know there's truth behind his words. Intel's Ultrabook push, the close
partnership with Acer and working closely with other, non-Apple OEMs is all very deliberate. Intel is always afraid of
customers getting too powerful and with Apple, the words too powerful don't even begin to describe it.

http://semiaccurate.com/2012/09/24/an-update-on-apple-moving-away-from-intel/
http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/chip.jpg

What does all of this have to do with Haswell? As I mentioned earlier, Intel has an ARM problem and Apple plays a major
role in that ARM problem. Atom was originally developed not to deal with ARM but to usher in a new type of ultra mobile
device. That obviously didn't happen. UMPCs failed, netbooks were a temporary distraction (albeit profitable for Intel) and
a new generation of smartphones and tablets became the new face of mobile computing. While Atom will continue to play
in the ultra mobile space, Haswell marks the beginning of something new. Rather than send its second string player into
battle, Intel is starting to prep its star for ultra mobile work.

Haswell is so much more than just another new microprocessor architecture from Intel. For years Intel has enjoyed a
wonderful position in the market. With its long term viability threatened, Haswell is the first step of a long term solution to
the ARM problem. While Atom was the first "fast-enough" x86 micro-architecture from Intel, Haswell takes a different
approach to the problem. Rather than working from the bottom up, Haswell is Intel's attempt to take its best micro-
architecture and drive power as low as possible.

Page 2

Platform Retargeting

Since the introduction of Conroe/Merom back in 2006 Intel has been prioritizing notebooks for the majority of its processor
designs. The TDP target for these architectures was set around 35 - 45W. Higher and lower TDPs were hit by binning and
scaling voltage. The rule of thumb is a single architecture can efficiently cover an order of magnitude of TDPs. In the case
of these architectures we saw them scale all the way up to 130W and all the way down to 17W.

In the middle of 2011 Intel announced its Ultrabook initiative, and at the same time mentioned that Haswell would shift
Intel's notebook design target from 35 - 45W down to 10 - 20W.

At the time I didn't think too much about the new design target, but everything makes a lot more sense now. This isn't a
"simple" architectural shift, it's a complete rethinking of how Intel approaches platform design. More importantly than
Haswell's 10 - 20W design point, is the new expanded SoC design target. I'll get to the second part shortly.

Platform Power

There will be four client focused categories of Haswell, and I can only talk about three of them now. There are the
standard voltage desktop parts, the mobile parts and the ultra-mobile parts: Haswell, Haswell M and Haswell U. There's a
fourth category of Haswell that may happen but a lot is still up in the air on that line.

http://images.anandtech.com/doci/6290/Intel%204th%20Gen.JPG

Of the three that Intel is talking about now, the first two (Haswell/Haswell M) don't do anything revolutionary on the
platform power side. Intel is promising around a 20% reduction in platform power compared to Sandy Bridge, but not the
order of magnitude improvement it promised at IDF. These platforms are still two-chip solutions with the SoC and a
secondary IO chip similar to what we have today with Ivy Bridge + PCH.

It's the Haswell U/ULT parts that brings about the dramatic change. These will be a single chip solution, with part of the
voltage regulation typically found on motherboards moved onto the chip's package instead. There will still be some VR
components on the motherboard as far as I can tell, it's the specifics that are lacking at this point (which seems to be
much of the theme of this year's IDF).

Seven years ago Intel first demonstrated working silicon with an on-chip North Bridge (now commonplace) and on-
package CMOS voltage regulation:

The benefits were two-fold: 1) Intel could manage fine grained voltage regulation with very fast transition times and 2) a
tangible reduction in board component count.

2005 - A prototype motherboard using the technology. Note the lack of voltage regulators on the motherboard and the
missing GMCH (North Bridge) chip.

The second benefit is very easy to understand from a mobile perspective. Fewer components on a motherboard means
smaller form factors and/or more room for other things (e.g. larger battery volume via a reduction in PCB size).

http://www.anandtech.com/show/1770
http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/poweroptimizer2.jpg
http://images.anandtech.com/doci/5078/1846200cfe8xm2o12h8tc5.jpeg

The first benefit made a lot of sense at the time when Intel introduced it, but it makes even more sense when you consider
the most dramatic change to Haswell: support for S0ix active idle.

Page 3

The New Sleep States: S0ix

A bunch of PC makers got together and defined the various operating modes that ACPI PCs can be in. If everyone plays
by the same rules there are no surprises, which is good for the entire ecosystem.

System level power states are denoted S0 - S5. Higher S-numbers indicate deeper levels of sleep. The table below helps
define the states:

ACPI Sleeping State Definitions

Sleeping State Description

S0 Awake

S1
Low wake latency sleeping state. No

system context is lost, hardware
maintains all context.

S2 Similar to S1 but CPU and system cache
context is lost

S3
All system context is lost except system
memory (CPU, cache, chipset context all

lost).

S4
Lowest power, longest wake latency

supported by ACPI. Hardware platform
has powered off all devices, platform

context is maintained.

S5
Similar so S4 except OS doesn't save
any context, requires complete boot

upon wake.

S0 is an operational system, while S1/S2 are various levels of idle that are transparent to the end user. S3 is otherwise
known as Suspend to RAM (STR), while S4 is commonly known as hibernate or Suspend to Disk (this one is less
frequently abbreviated for some reason...).

These six sleeping states have served the PC well over the years. The addition of S3 gave us fast resume from sleep,
something that's often exploited when you're on the go and need to quickly transition between using your notebook and
carrying it around. The ultra mobile revolution however gave us a new requirement: the ability to transact data while in an
otherwise deep sleep state.

Your smartphone and tablet both fetch emails, grab Twitter updates, receive messages and calls while in their sleep state.

The prevalence of always-on wireless connectivity in these devices makes all of this easy, but the PC/smartphone/tablet
convergence guarantees that if the PC doesn't adopt similar functionality it won't survive in the new world.

The solution is connected standby or active idle, a feature supported both by Haswell and Clovertrail as well as all of the
currently shipping ARM based smartphones and tablets. Today, transitioning into S3 sleep is initiated by closing the lid on
your notebook or telling the OS to go to sleep. In Haswell (and Clovertrail), Intel introduced a new S0ix active idle state
(there are multiple active idle states, e.g. S0i1, S0i3). These states promise to deliver the same power consumption as S3
sleep, but with a quick enough wake up time to get back into full S0 should you need to do something with your device.

If these states sound familiar it's because Intel first told us about them with Moorestown:

In Moorestown it takes 1ms to get out of S0i1 and only 3ms to get out of S0i3. I would expect Haswell's wakeup latencies
to be similar. From the standpoint of a traditional CPU design, even 1ms is an eternity, but if you think about it from the
end user perspective a 1 - 3ms wakeup delay is hardly noticeable especially when access latency is dominated by so
many other factors in the chain (e.g. the network).

What specifically happens in these active idle power states? In the past Intel focused on driving power down for all of the
silicon it owned: the CPU, graphics core, chipset and even WiFi. In order to make active idle a reality, Intel's reach had to
extend beyond the components it makes.

With Haswell U/ULT parts, Intel will actually go in and specify recommended components for the rest of the platform. I'm
talking about everything from voltage regulators to random microcontrollers on the motherboard. Even more than actual
component "suggestions", Intel will also list recommended firmwares for these components. Intel gave one example
where an embedded controller on a motherboard was using 30 - 50mW of power. Through some simple firmware changes
Intel was able to drop this particular controller's power consumption down to 5mW. It's not rocket science, but this is Intel's
way of doing some of the work that its OEM partners should have been doing for the past decade. Apple has done some
of this on its own (which is why OS X based notebooks still enjoy tangibly longer idle battery life than their Windows
counterparts), but Intel will be offering this to many of its key OEM partners and in a significant way.

Intel's focus on everything else in the system extends beyond power consumption - it also needs to understand the
latency tolerance of everything else in the system. The shift to active idle states is a new way of thinking. In the early days
of client computing there was a real focus on allowing all off-CPU controllers to work autonomously. The result of years of
evolution along those lines resulted in platforms where any and everything could transact data whenever it wanted to.

By knowing how latency tolerant all of the controllers and components in the system are, hardware and OS platform
power management can begin to align traffic better. Rather than everyone transacting data whenever it's ready, all of the
components in the system can begin to coalesce their transfers so that the system wakes up for a short period of time to
do work then quickly return to sleep. The result is a system that's more frequently asleep with bursts of lots of activity
rather than frequently kept awake by small transactions. The diagram below helps illustrate the potential power savings:

http://www.anandtech.com/show/6340/intel-details-atom-z2760-clovertrail-for-windows-8-tablets

Windows 8 is pretty much a requirement to get the full benefits, although with the right drivers in place you'll see some
improvement on Windows 7 as well. As most of these platform level power enhancements are targeted at 3rd generation
Ultrabooks/tablets it's highly unlikely you'll see Windows 7 ship on any of them.

All of these platform level power optimizations really focus on components on the motherboard and shaving mWs here
and there. There's still one major consumer of power budget that needs addressing as well: the display.

For years Intel has been talking about Panel Self Refresh (PSR) being the holy grail of improving notebook battery life.
The concept is simple: even when what's on your display isn't changing (staring at text, looking at your desktop, etc...) the
CPU and GPU still have to wake up to refresh the panel 60 times a second. The refresh process isn't incredibly power
hungry but it's more wasteful than it needs to be given that no useful work is actually being done.

One solution is PSR. By including a little bit of DRAM on the panel itself, the display could store a copy of the frame buffer.
In the event that nothing was changing on the screen, you could put the entire platform to sleep and refresh the panel by
looping the same frame data stored in the panel's DRAM. The power savings would be tremendous as it'd allow your
entire notebook/tablet/whatever to enter a virtual off state. You could get even more creative and start doing selective
PSR where only parts of the display are updated and the rest remain in self-refresh mode (e.g. following a cursor,
animating a live tile, etc...).

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/activityalignment.jpg

Object 1

Display makers have been resistant to PSR because of the fact that they now have to increase their bill of materials cost
by adding DRAM to the panel. The race to the bottom that we've seen in the LCD space made it unlikely that any of the
panel vendors would be jumping at the opportunity to make their products more expensive. Intel believes that this time
things will be different. Half of the Haswell ULT panel vendors will be enabled with Panel Self Refresh over eDP. That
doesn't mean that we'll see PSR used in those machines, but it's hopefully a good indication.

Similar to what we've seen from Intel in the smartphone and tablet space, you can expect to see reference platforms built
around Haswell to show OEMs exactly what they need to put down on a motherboard to deliver the sort of idle power
consumption necessary to compete in the new world. It's not clear to me how Intel will enforce these guidelines, although
it has a number of tools at its disposal - logo certification being the most obvious.

Page 4

Other Power Savings

Haswell's power savings come from three sources, all of which are equally important. We already went over the most
unique: Intel's focus on reducing total platform power consumption by paying attention to everything else on the
motherboard (third party controllers, voltage regulation, etc...). The other two sources of power savings are more
traditional, but still very significant.

At the micro-architecture level Intel added more power gating and low power modes to Haswell. The additional power
gating gives the power control unit (PCU) more fine grained control over shutting off parts of the core that aren't used.
Intel published a relatively meaningless graph showing idle power for standard voltage mobile Haswell compared to the
previous three generations of Core processors.

Haswell can also transition between power states approximately 25% faster than Ivy Bridge, which lets the PCU be a bit
more aggressive in which power state it selects since the penalty of coming out of it is appreciably lower. It's important to
put the timing of all of this in perspective. Putting the CPU cores to sleep and removing voltage/power from them even for
a matter of milliseconds adds up to the sort of savings necessary to really enable the sort of always-on, always-connected
behavior Haswell based systems are expected to deliver.

Intel has also done a lot of work at the process level to bring Haswell's power consumption down. As a tock, Haswell is
the second micro-architecture to use Intel's new 22nm tri-gate transistors. The learnings from Ivy Bridge are thus all
poured into Haswell. Intel wasn't too specific on what it did on the manufacturing side to help drive power down in Haswell
other than to say that a non-insignificant amount of work came from the fabs.

The Fourth Haswell

At Computex Intel's Mooly Eden showed off this slide that positioned Haswell as a 15-20W part, while Atom based SoCs
would scale up to 10W and perhaps beyond:

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/power.jpg

Just before this year's IDF Intel claimed that Haswell ULT would start at 10W, down from 17W in Sandy/Ivy Bridge. Finally,
at IDF Intel showed a demo of Haswell running the Unigen Heaven benchmark at under 8W:

The chain of events tells us two things: 1) Intel likes to play its cards close to its chest, and 2) the sub-10W space won't be
serviced by Atom exclusively.

Intel said Haswell can scale below 10W, but it didn't provide a lower bound. It's too much to assume Haswell would go into
a phone, but once you get to the 8W point and look south you open yourself up to fitting into things the size of a third
generation iPad. Move to 14nm, 10nm and beyond then it becomes more feasible that you could fit this class of
architecture into something even more portable.

Intel is being very tight lipped about the fourth client Haswell (remember the first three were desktop, mobile and ultra-low-
volt/Ultrabook) but it's clear that it has real aspirations to use it in a space traditionally reserved for ARM or Atom SoCs.

One of the first things I ever heard about Haswell was that it was Intel's solution to the ARM problem. I don't believe a
10W notebook is going to do anything to the ARM problem, but a sub-8W Haswell in an iPad 3 form factor could be very
compelling. Haswell won't be fanless, but Broadwell (14nm) could be. And that could be a real solution to the ARM
problem, at least outside of a phone.

As I said before, I don't see Haswell making it into a phone but that's not to say a future derivative on a lower power
process wouldn't.

Page 5

CPU Architecture Improvements: Background

Despite all of this platform discussion, we must not forget that Haswell is the fourth tock since Intel instituted its tick-tock

http://www.anandtech.com/show/6262/intels-haswell-20x-lower-platform-idle-power-than-sandy-bridge-2x-gpu-performance-of-ivy-bridge
http://www.anandtech.com/show/6248/haswell-at-idf-2012-10w-is-the-new-17w
http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/computexhaswell.jpg
http://images.anandtech.com/doci/6262/DSC_8143.JPG

cadence. If you're not familiar with the terminology by now a tock is a "new" microprocessor architecture on an existing
manufacturing process. In this case we're talking about Intel's 22nm 3D transistors, that first debuted with Ivy Bridge.
Although Haswell is clearly SoC focused, the designs we're talking about today all use Intel's 22nm CPU process - not the
22nm SoC process that has yet to debut for Atom. It's important to not give Intel too much credit on the manufacturing
front. While it has a full node advantage over the competition in the PC space, it's currently only shipping a 32nm low
power SoC process. Intel may still have a more power efficient process at 32nm than its other competitors in the SoC
space, but the full node advantage simply doesn't exist there yet.

Although Haswell is labeled as a new micro-architecture, it borrows heavily from those that came before it. Without going
into the full details on how CPUs work I feel like we need a bit of a recap to really appreciate the changes Intel made to
Haswell.

At a high level the goal of a CPU is to grab instructions from memory and execute those instructions. All of the tricks and
improvements we see from one generation to the next just help to accomplish that goal faster.

The assembly line analogy for a pipelined microprocessor is over used but that's because it is quite accurate. Rather than
seeing one instruction worked on at a time, modern processors feature an assembly line of steps that breaks up the
grab/execute process to allow for higher throughput.

The basic pipeline is as follows: fetch, decode, execute, commit to memory. You first fetch the next instruction from
memory (there's a counter and pointer that tells the CPU where to find the next instruction). You then decode that
instruction into an internally understood format (this is key to enabling backwards compatibility). Next you execute the
instruction (this stage, like most here, is split up into fetching data needed by the instruction among other things). Finally
you commit the results of that instruction to memory and start the process over again.

Modern CPU pipelines feature many more stages than what I've outlined here. Conroe featured a 14 stage integer
pipeline, Nehalem increased that to 16 stages, while Sandy Bridge saw a shift to a 14 - 19 stage pipeline (depending on
hit/miss in the decoded uop cache).

The front end is responsible for fetching and decoding instructions, while the back end deals with executing them. The
division between the two halves of the CPU pipeline also separates the part of the pipeline that must execute in order from
the part that can execute out of order. Instructions have to be fetched and completed in program order (can't click Print
until you click File first), but they can be executed in any order possible so long as the result is correct.

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/ticktock.jpg

Why would you want to execute instructions out of order? It turns out that many instructions are either dependent on one
another (e.g. C=A+B followed by E=C+D) or they need data that's not immediately available and has to be fetched from
main memory (a process that can take hundreds of cycles, or an eternity in the eyes of the processor). Being able to
reorder instructions before they're executed allows the processor to keep doing work rather than just sitting around
waiting.

Sidebar on Performance Modeling

Microprocessor design is one giant balancing act. You model application performance and build the best architecture you
can in a given die area for those applications. Tradeoffs are inevitably made as designers are bound by power, area and
schedule constraints. You do the best you can this generation and try to get the low hanging fruit next time.

Performance modeling includes current applications of value, future algorithms that you expect to matter when the chip
ships as well as insight from key software developers (if Apple and Microsoft tell you that they'll be doing a lot of realistic
fur rendering in 4 years, you better make sure your chip is good at what they plan on doing). Obviously you can't predict
everything that will happen, so you continue to model and test as new applications and workloads emerge. You feed that
data back into the design loop and it continues to influence architectures down the road.

During all of this modeling, even once a design is done, you begin to notice bottlenecks in your design in various
workloads. Perhaps you notice that your L1 cache is too small for some newer workloads, or that for a bunch of popular
games you're seeing a memory access pattern that your prefetchers don't do a good job of predicting. More
fundamentally, maybe you notice that you're decode bound more often than you'd like - or alternatively that you need
more integer ALUs or FP hardware. You take this data and feed it back to the team(s) working on future architectures.

The folks working on future architectures then prioritize the wish list and work on including what they can.

Page 6

The Haswell Front End

Conroe was a very wide machine. It brought us the first 4-wide front end of any x86 micro-architecture, meaning it could
fetch and decode up to 4 instructions in parallel. We've seen improvements to the front end since Conroe, but the overall
machine width hasn't changed - even with Haswell.

Haswell leaves the overall pipeline untouched. It's still the same 14 - 19 stage pipeline that we saw with Sandy Bridge
depending on whether or not the instruction is found in the uop cache (which happens around 80% of the time). L1/L2
cache latencies are unchanged as well. Since Nehalem, Intel's Core micro-architectures have supported execution of two
instruction threads per core to improve execution hardware utilization. Haswell also supports 2-way SMT/Hyper
Threading.

The front end remains 4-wide, although Haswell features a better branch predictor and hardware prefetcher so we'll see
better efficiency. Since the pipeline depth hasn't increased but overall branch prediction accuracy is up we'll see a positive
impact on overall IPC (instructions executed per clock). Haswell is also more aggressive on the speculative memory
access side.

The image below is a crude representation I put together of the Haswell front end compared to the two previous tocks. If
you click the buttons below you'll toggle between Haswell, Sandy Bridge and Nehalem diagrams, with major changes
highlighted.

In short, there aren't many major, high-level changes to see here. Instructions are fetched at the top, sent through a bunch
of steps before getting to the decoders where they're converted from macro-ops (x86 instructions) to an internally
understood format known to Intel as micro-ops (or µops). The instruction fetcher can grab 4 - 5 x86 instructions at a time,

and the decoders can output up to 4 micro-ops per clock.

Sandy Bridge introduced the 1.5K µop cache that caches decoded micro-ops. When future instruction fetch requests are
made, if the instructions are contained within the µop cache everything north of the cache is powered down and the
instructions are serviced from the µop cache. The decode stages are very power hungry so being able to skip them is a
boon to power efficiency. There are also performance benefits as well. A hit in the µop cache reduces the effective integer
pipeline to 14 stages, the same length as it was in Conroe in 2006. Haswell retains all of these benefits. Even the µop
cache size remains unchanged at 1.5K micro-ops (approximately 6KB in size).

Although it's noted above as a new/changed block, the updated instruction decode queue (aka allocation queue) was
actually one of the changes made to improve single threaded performance in Ivy Bridge.

The instruction decode queue (where instructions go after they've been decoded) is no longer statically partitioned
between the two threads that each core can service.

The big changes in Haswell are at the back end of the pipeline, in the execution engine.

Page 7

Prioritizing ILP

Intel has held the single threaded performance crown for years now, but the why is really quite easy to understand: it has
prioritized extracting instruction level parallelism with every generation. Couple that with the fact that every two years we
see a "new" microprocessor architecture from Intel and there's a recipe for some good old evolutionary gains. The table
below shows the increase in size of some major data structures inside Intel's architectures for every tock since Conroe:

Intel Core Architecture Buffer Sizes

 Conroe Nehalem Sandy Bridge Haswell

Out-of-order Window 96 128 168 192

In-flight Loads 32 48 64 72

In-flight Stores 20 32 36 42

Scheduler Entries 32 36 54 60

Integer Register File N/A N/A 160 168

FP Register File N/A N/A 144 168

Allocation Queue ? 28/thread 28/thread 56

Increasing the OoO window allows the execution units to extract more parallelism and thus improve single threaded
performance. Each generation Intel is simply dedicating additional transistors to increasing these structures and thus
better feeding the beast.

This isn't rocket science, but it is enabled by Intel's clockwork fab execution. Designers can count on another 30% die
area to work with every 2 years, so every 2 years they increase the size of these structures without worrying about
ballooning the die. The beauty of evolutionary improvements like this is that when viewed over the long term they look
downright revolutionary. Comparing Haswell to Conroe, the OoO scheduling window has grown by a factor of 2x, despite
generation to generation gains of only 14 - 33%.

Page 8

Haswell's Wide Execution Engine

Conroe introduced the six execution ports that we've seen used all the way up to Ivy Bridge. Sandy Bridge saw significant
changes to the execution engine to enable 256-bit AVX operations but without increasing the back end width. Haswell
does a lot here.

Just as before, I put together a few diagrams that highlight the major differences throughout the past three generations for
the execution engine.

The reorder buffer is one giant tracking structure for all of the micro-ops that are in various stages of execution. The size
of this buffer is directly impacted by the accuracy of the branch predictor as that will determine how many instructions can
be kept in flight at a given time.

The reservation station holds micro-ops as they wait for the data they need to begin execution. Both of these structures
grow by low double-digit percentages in Haswell.

Simply being able to pick from more instructions to execute in parallel is one thing, we haven't seen an increase in the
number of parallel execution ports since Conroe. Haswell changes that.

From Conroe to Ivy Bridge, Intel's Core micro-architecture has supported the execution of up to six micro-ops in parallel.
While there are more than six execution units in the system, there are only six ports to stacks of execution units. Three
ports are used for memory operations (loads/stores) while three are on math duty. Over the years Intel has added

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/ILP.jpg

additional types and widths of execution units (e.g. Sandy Bridge added 256-bit AVX operations) but it hasn't strayed from
the 6 port architecture.

Haswell finally adds two more execution ports, one for integer math and branches (port 6) and one for store address
calculation (port 7). Including both additional compute and memory hardware is a balanced decision on Intel's part.

The extra ALU and port does one of two things: either improve performance for integer heavy code, or allow integer work
to continue while FP math occupies ports 0 and 1. Remember that Haswell, like its predecessors, is an SMT design
meaning each core will see instructions from up to two threads at the same time. Although a single app is unlikely to mix
heavy vector FP and integer code, it's quite possible that two applications running at the same time may produce such
varied instructions. Having more integer ALUs is never a bad thing.

Also using port 6 is another unit that can handle x86 branch instructions. Branch heavy code can now enjoy two
independent branch units, or if port 0 is occupied with other math the machine can still execute branches on port 6.
Haswell moved the original Core branch unit from port 5 over to port 0, the most capable port in the system, so a branch
unit on a lightly populated port makes helps ensure there's no performance regression as a result of the change.

Sandy Bridge made ports 2 & 3 equal class citizens, with both capable of being used for load or store address calculation.
In the past you could only do loads on port 2 and store addresses on port 3. Sandy Bridge's flexibility did a lot for load
heavy code, which is quite common. Haswell's dedicated store address port should help in mixed workloads with lots of
loads and stores.

The other major addition to the execution engine is support for Intel's AVX2 instructions, including FMA (Fused Multiply-
Add). Ports 0 & 1 now include newly designed 256-bit FMA units. As each FMA operation is effectively two floating point
operations, these two units double the peak floating point throughput of Haswell compared to Sandy/Ivy Bridge. A side
effect of the FMA units is that you now get two ports worth of FP multiply units, which can be a big boon to legacy FP
code.

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/avx2.jpg

Fused Multiply-Add operations are incredibly handy in all sorts of media processing and 3D work. Rather than having to
independently multiply and add values, being able to execute both in tandem via a single execution port increases the
effective execution width of the machine. Note that a single FMA operation takes 5 cycles in Haswell, which is the same
latency as a FP multiply from Sandy/Ivy Bridge. In the previous generation a floating point multiply+add took 8 cycles, so
there's a good latency improvement here as well as the throughput boost from having two FMA units.

Intel focused a lot on adding more execution horsepower in Haswell without creating a power burden for legacy use
cases. All of the new units can be shut off when not in use. Furthermore, Intel went in and ensured that this applied to the
older execution units as well: in Haswell if you're not doing work, you're not consuming power.

Page 9

Feeding the Beast: 2x Cache Bandwidth in Haswell

With an outright doubling of peak FP throughput in Haswell, Intel had to ensure that the execution units had ample
bandwidth to the caches to sustain performance. As a result L1 bandwidth is doubled, as is the interface between the L1
and L2 caches.

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/flops.jpg
http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/crypto.jpg

L1/L2 cache latencies and sizes remain unchanged. The same isn't true for the L3 cache however.

Page 10

Decoupled L3 Cache

With Nehalem Intel introduced an on-die L3 cache behind a smaller, low latency private L2 cache. At the time, Intel
maintained two separate clock domains for the CPU (core + uncore) and a third for what was, at the time, an off-die
integrated graphics core. The core clock referred to the CPU cores, while the uncore clock controlled the speed of the L3
cache. Intel believed that its L3 cache wasn't incredibly latency sensitive and could run at a lower frequency and burn less
power. Core CPU performance typically mattered more to most workloads than L3 cache performance, so Intel was ok
with the tradeoff.

In Sandy Bridge, Intel revised its beliefs and moved to a single clock domain for the core and uncore, while keeping a
separate clock for the now on-die processor graphics core. Intel now felt that race to sleep was a better philosophy for
dealing with the L3 cache and it would rather keep things simple by running everything at the same frequency. Obviously
there are performance benefits, but there was one major downside: with the CPU cores and L3 cache running in lockstep,
there was concern over what would happen if the GPU ever needed to access the L3 cache while the CPU (and thus L3
cache) was in a low frequency state. The options were either to force the CPU and L3 cache into a higher frequency state
together, or to keep the L3 cache at a low frequency even when it was in demand to prevent waking up the CPU cores.
Ivy Bridge saw the addition of a small graphics L3 cache to mitigate this situation, but ultimately giving the on-die GPU
independent access to the big, primary L3 cache without worrying about power concerns was a big issue for the design
team.

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/cachebw.jpg

When it came time to define Haswell, the engineers once again went to Nehalem's three clock domains. Ronak (Nehalem
& Haswell architect, insanely smart guy) tells me that the switching between designs is simply a product of the team
learning more about the architecture and understanding the best balance. I think it tells me that these guys are still human
and don't always have the right answer for the long term without some trial and error.

The three clock domains in Haswell are roughly the same as what they were in Nehalem, they just all happen to be on the
same die. The CPU cores all run at the same frequency, the on-die GPU runs at a separate frequency and now the L3 +
ring bus are in their own independent frequency domain.

Now that CPU requests to L3 cache have to cross a frequency boundary there will be a latency impact to L3 cache
accesses. Sandy Bridge had an amazingly fast L3 cache, Haswell's L3 accesses will be slower.

The benefit is obviously power. If the GPU needs to fire up the ring bus to give/get data, it no longer has to drive up the
CPU core frequency as well. Furthermore, Haswell's power control unit can dynamically allocate budget between all areas
of the chip when power limited.

Although L3 latency is up in Haswell, there's more access bandwidth offered to each slice of the L3 cache. There are now
dedicated pipes for data and non-data accesses to the last level cache.

Haswell's memory controller is also improved, with better write throughput to DRAM. Intel has been quietly telling the
memory makers to push for even higher DDR3 frequencies in anticipation of Haswell.

Page 11

TSX

Johan did a great job explaining Haswell's Transactional Synchronization eXtensions (TSX), so I won't go into as much

http://www.anandtech.com/show/6290/making-sense-of-intel-haswell-transactional-synchronization-extensions
http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/LLCfreq.jpg

depth here. The basic premise is simple, although the implementation is quite complex.

It's easy to demand well threaded applications from software vendors, but actually implementing code that scales well
across unlimited threads isn't easy. Parallelizing truly independent tasks is the low hanging fruit, but it's the tasks that all
access the same data structure that can create problems. With multiple cores accessing the same data structure, running
independent of one another, there's the risk of two different cores writing to the same part of the same structure. Only one
set of data can be right, but dealing with this concurrent access problem can get hairy.

The simplest way to deal with it is simply to lock the entire data structure as soon as one core starts accessing it and only
allow that one core write access until it's done. Other cores are given access to the data structure, but serially, not in
parallel to avoid any data integrity issues.

This is by far the easiest way to deal with the problem of multiple threads accessing the same data structure, however it
also prevents any performance scaling across multiple threads/cores. As focused as Intel is on increasing single threaded
performance, a lot of die area goes wasted if applications don't scale well with more cores.

Software developers can instead choose to implement more fine grained locking of data structures, however doing so
obviously increases the complexity of their code.

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/tsx3.jpg

Haswell's TSX instructions allow the developer to shift much of the complexity of managing locks to the CPU. Using the
new Hardware Lock Elision and its XAQUIRE/XRELEASE instructions, Haswell developers can mark a section of code for
transactional execution. Haswell will then execute the code as if no hardware locks were in place and if it completes
without issues the CPU will commit all writes to memory and enjoy the performance benefits. If two or more threads
attempt to write to the same area in memory, the process is aborted and code re-executed traditionally with locks. The
XAQUIRE/XRELEASE instructions decode to no-ops on earlier architectures so backwards compatibility isn't a problem.

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/tsx4.jpg

Like most new instructions, it's going to take a while for Haswell's TSX to take off as we'll need to see significant adoption
of Haswell platforms as well as developers embracing the new instructions. TSX does stand to show improvements in
performance anywhere from client to server performance if implemented however, this is definitely one to watch for and
be excited about.

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/tsx2.jpg

Haswell also continues improvements in virtualization performance, including big decreases to guest/host transition times.

Page 12

Haswell's GPU

Although Intel provided a good amount of detail on the CPU enhancements to Haswell, the graphics discussion at IDF
was fairly limited. That being said, there's still some to talk about here.

Haswell builds on the same fundamental GPU architecture we saw in Ivy Bridge. We won't see a dramatic redesign/re-
plumbing of the graphics hardware until Broadwell in 2014 (that one is going to be a big one).

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/VT.jpg

Haswell's GPU will be available in three physical configurations: GT1, GT2 and GT3. Although Intel mentioned that the
Haswell GT3 config would have twice the shader count of Haswell GT2, it was careful not to disclose the total number of
EUs in any of the versions. Based on the information we have at this point, GT3 should be a 40 EU configuration while
GT2 should feature 20 EUs. Intel will also be including up to one redundant EU to deal with the case where there's a
defect in an EU in the array. This isn't an uncommon practice, but it does indicate just how much of the die will be
dedicated to graphics in Haswell. The larger of an area the GPU covers, the greater the likelihood that you'll see
unrecoverable defects in the GPU. Redundancy at the EU level is one way of mitigating that problem.

Haswell's processor graphics extends API support to DirectX 11.1, OpenCL 1.2 and OpenGL 4.0.

At the front of the graphics pipeline is a new resource streamer. The RS offloads some driver work that the CPU would
normally handle and moves it to GPU hardware instead. Both AMD and NVIDIA have significant command processors so
this doesn't appear to be an Intel advantage although the devil is in the (unshared) details. The point from Intel's
perspective is that any amount of processing it can shift away from general purpose CPU hardware and onto the GPU can
save power (CPU cores go to sleep while the RS/CS do their job).

Beyond the resource streamer, most of the fixed function graphics hardware sees a doubling of performance in Haswell.

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/gpu2.jpg

At the shader core level, Intel separates the GPU design into two sections: slice common and sub-slice. Slice common
includes the rasterizer, pixel back end and GPU L3 cache. The sub-slice includes all of the EUs, instruction caches and
EUs.

In Haswell GT1 and GT2 there's a single slice common, while GT3 sees a doubling of slice common. GT3 similarly has
two sub-slices, although once again Intel isn't talking specifics about EU counts or clock speeds between GT1/2/3.

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/gpu3.jpg

The final bit of detail Intel gave out about Haswell's GPU is the texture sampler sees up to a 4x improvement in throughput
over Ivy Bridge in some modes.

Now to the things that Intel didn't let loose at IDF. Although originally an option for Ivy Bridge (but higher ups at Intel killed
plans for it) was a GT3 part with some form of embedded DRAM. Rumor has it that Apple was the only customer who
really demanded it at the time, and Intel wasn't willing to build a SKU just for Apple.

Haswell will do what Ivy Bridge didn't. You'll see a version of Haswell with up to 128MB of embedded DRAM, with a lot of
bandwidth available between it and the core. Both the CPU and GPU will be able to access this embedded DRAM,
although there are obvious implications for graphics.

Overall performance gains should be about 2x for GT3 (presumably with eDRAM) over HD 4000 in a high TDP part. In
Ultrabooks those gains will be limited to around 30% max given the strict power limits.

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/gpu4.jpg

As for why Intel isn't talking about embedded DRAM on Haswell, your guess is as good as mine. The likely release
timeframe for Haswell is close to June 2013, there's still tons of time between now and then. It looks like Intel still has a
desire to remain quiet on some fronts.

Page 13

Haswell Media Engine: QuickSync the Third

Although we still have one more generation to go before QuickSync can apparently deliver close to x86 image quality,
Haswell doesn't shy away from improving its media engine.

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/gpu.jpg

First and foremost is hardware support for the SVC (Scalable Video Coding) codec. The idea behind SVC is to take one
high resolution bitstream from which lower quality versions can be derived. There are huge implications for SVC in
applications that have varied bandwidth levels and/or decode capabilities.

Haswell also adds a hardware motion JPEG decoder, and MPEG2 hardware encoder.

Ivy Bridge will be getting 4K video playback support later this year, Haswell should obviously ship with it.

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/media3.jpg

Finally there's a greater focus on image quality this generation, although as I mentioned before I'm not sure we'll see
official support in a lot of the open source video codecs until Broadwell comes by. With added EUs we'll obviously see
QuickSync performance improve, but I don't have data as to how much faster it'll be compared to Ivy Bridge.

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/media2.jpg

Page 14

Final Words

After the show many seemed to feel like Intel short changed us at this year's IDF when it came to architecture details and
disclosures. The problem is perspective. Shortly after I returned home from the show I heard an interesting comparison:
Intel detailed quite a bit about an architecture that wouldn't be shipping for another 9 months, while Apple wouldn't say a
thing about an SoC that was shipping in a week. That's probably an extreme comparison given that Apple has no
motivation to share details about A6 (yet), but even if you compare Intel's openness at IDF to the rest of the chip makers
we cover - there's a striking contrast. We'll always want more from Intel at IDF, but I do hope that we won't see a retreat
as the rest of the industry seems to be ok with non-disclosure as standard practice.

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/media.jpg

There are three conclusions that have to be made when it comes to Haswell: its CPU architecture, its platform architecture
and what it means for Intel's future. Two of the three look good from my perspective. The third one is not so clear.

Intel's execution has been relentless since 2006. That's over half a decade of iterating architectures, as promised, roughly
once a year. Little, big, little, big, process, architecture, process, architecture, over and over again. It's a combination of
great execution on the architecture side combined with great enabling by Intel's manufacturing group. Haswell will
continue to carry the torch in this regard.

The Haswell micro-architecture focuses primarily on widening the execution engine that has been with us, moderately
changed, for the past several years. Increasing data structures and buffers inside the processor helps to feed the beast,
as does a tremendous increase in cache bandwidth. Support for new instructions in AVX2 via Intel's TSX should also
pave the way for some big performance gains going forward. Power consumption is also a serious target for Haswell
given that it must improve performance without dramatically increasing TDP. There will be slight TDP increases across the
board for traditional form factors, while ultra portables will obviously shift to lower TDPs. Idle power drops while active
power should obviously be higher than Ivy Bridge.

You can expect CPU performance to increase by around 5 - 15% at the same clock speed as Ivy Bridge. Graphics
performance will see a far larger boost (at least in the high-end GT3 configuration) of up to 2x vs. Intel's HD 4000 in a
standard voltage/TDP system. GPU performance in Ultrabooks will increase by up to 30% over HD 4000.

As a desktop or notebook microprocessor, Haswell looks very good. The architecture remains focused and delivers a
sensible set of improvements over its predecessor.

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/summary.jpg

As a platform, Haswell looks awesome. While the standard Haswell parts won't drive platform power down considerably,
the new Haswell U/ULT parts will. Intel is promising a greater than 20x reduction in platform idle power and it's planning
on delivering it by focusing its power reduction efforts beyond Intel manufactured components. Haswell Ultrabooks and
tablets will have Intel's influence in many (most?) of the components placed on the motherboard. And honestly, this is
something Intel (or one of its OEMs) should have done long ago. Driving down platform power is a problem that extends
beyond the CPU or chipset, and it's one that requires a holistic solution. With Haswell, Intel appears committed to
delivering that solution. It's not for purely altruistic reasons, but for the survival of the PC. I remember talking to Vivek
about an iPad as a notebook replacement piece he was doing a while back. The biggest advantage the iPad offered over
a notebook in his eyes? Battery life. Even for light workloads today's most power efficient ultraportable notebooks can't
touch a good ARM based tablet. Haswell U/ULT's significant reduction in platform power is intended to fix that. I don't
know that we'll get to 10+ hours of battery life on a single charge, but we should be much better off than we are today.

Connected standby is coming to PCs and it's a truly necessary addition. Haswell's support of active idle states (S0ix) is a
game changer for the way portable PCs work. The bigger concern is whether or not the OEMs and ISVs will do their best
to really take advantage of what Haswell offers. I know one will, but will the rest? Intel's increasingly hands on approach to
OEM relations seems to be its way of ensuring we'll see Haswell live up to its potential.

Haswell, on paper, appears to do everything Intel needs to evolve the mobile PC platform. What's unclear is how far down
the TDP stack Intel will be able to take the architecture. Intel seems to believe that TDPs below 8W are attainable, but it's
too early to tell just how low Haswell can go. It's more than likely that Intel knows and just doesn't want to share at this
point. I don't believe we'll see fanless Haswell designs, but Broadwell is another story entirely.

There's no diagram for where we go from here. Intel originally claimed that Atom would service an expanded range of
TDPs all the way up to 10W. With Core architectures dipping below 10W, I do wonder if that slide was a bit of
misdirection. I wonder if, instead, the real goal is to drive Core well into Atom territory. If Intel wants to solve its ARM
problem, that would appear to be a very good solution.

http://images.anandtech.com/reviews/cpu/intel/Haswell/Architecture/overview.jpg

