9

GPU Architecture Overview

John Owens
UC Davis

(c]XGPU

The Right-Hand Turn ‘

10,000 Intel Xeon, 3.6 GHz ___64-bit Intel Xeon, 3.6 GHz
AMD Opteron, 2.2 GHz g_—-#=8 590
Intel Pentium 4,3.0 GHz &=~ " 5364
4195

1000 F 1267
g
w
=
=

=20%
; o
G100 [
@®
i3
c
©
£
8
E 52%/year
<. SO
VAX-1/780 s
eentT 25%IeAr o 5 yax-11/785

0
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

mG PU [H&P Figure 1.1]

Why? [Architecture Reasons]

e ILP increasingly difficult to extract from
instruction stream

e Control hardware dominates pyprocessors
- Complex, difficult to build and verify
- Takes substantial fraction of die
- Scales poorly

e Pay for max throughput, sustain average throughput
« Quadratic dependency checking

- Control hardware doesn’t do any math!

e Intel Core Duo: 48 GFLOPS, ~10 GB/s
o NVIDIA G80: 330 GFLOPS, 80+ GB/s

[1:GPU

AMD “Deerhound” (K8L) J

[SartiRecipr 8kbYECC for DCache " | I " ,
e arwm
e

SSE2 SSE2 / x87)
Floating Floating Data Cach

- - —
- " -
T Single 256 bit -
- *
read/wrile port
)

[1}Instruction|Cache
o

SSE2 | x87
' Floating

256 bit wide .2
Point integer nterface
bt v o

s

MUL

de

. Add 2 SSE1
SSE1 [Integer 1 X
integer 2 - Integer
v ache - ALUSs |,
3x = e 3xseg.
FloatP. 8 - 3AGU | imit J
schedulers check

tion Decox
R =
lash memo
Rl

e Flash me

d

mmea
fcro Coc

x N

Complex Instru

&

3dnow! Store
Algn

Constant ™ — Load / Store Unit 2
Rom Snoop

D

chip-architect.com

Why? [Technology Reasons]

e Industry moving from “instructions per
second” to “instructions per watt”
- “Power wall” now all-important
- Traditional pproc techniques are not power-efficient

« We can continue to put more transistors on
a chip ...

- ... but we can’t scale their voltage like we used to ...
- ... and we can’t clock them as fast ...

[1:GPU

Go Parallel

« Time of architectural
innovation

- GPUs let us explore using
hundreds of processors now, not
10 years from now

e Major CPU vendors
supporting multicore

e Interest in general-purpose
programmability on GPUs

e Universities must teach
thinking in parallel

[1:GPU

What’s Different about the GPU?

e The future of the desktop is parallel
- We just don’t know what kind of parallel

e GPUs and multicore are different

- Multicore: Coarse, heavyweight threads, better
performance per thread

- GPUs: Fine, lightweight threads, single-thread
performance is poor

e A case for the GPU

- Interaction with the world is visual
- GPUs have a well-established programming model
- Market for GPUs is 500M+ total/year

[1:GPU

The Rendering Pipeline

Application

!

—

Geometry

Rasterization

'

Composite

GPU

Compute 3D geometry
Make calls to graphics API

Transform geometry from 3D to
2D (in parallel)

Generate fragments from 2D
geometry (in parallel)

[1:GPU

Combine fragments into image

The Programmable Pipeline

Application

!

—

Geometry

Rasterization

'

Composite

GPU

Compute 3D geometry
Make calls to graphics API

Transform geometry from 3D to
2D [vertex programs]

Generate fragments from 2D
geometry [fragment programs]|

[1:GPU

Combine fragments into image

DirectX 10 Pipeline

SIGGRAPH2007

Constant

Input

Assembler

Constant

Index

Bufier

 fixed

. programmable

Jj memory

Constant

Output
Merger

Courtesy David Blythe, Microsoft

Characteristics of Graphics

e Large computational requirements

e Massive parallelism

- Graphics pipeline designed for independent
operations

e Long latencies tolerable
 Deep, feed-forward pipelines
« Hacks are OK—can tolerate lack of accuracy

e« GPUs are good at parallel, arithmetically
intense, streaming-memory problems

[1:GPU

Graphics Hardware—Task Parallel

Application Application/
: —Mem
Command Command (CPU)
v v
Verltex Command | [PP M=
4
Geometry !
! Fragment |}«
Rasterization Vertex i
: T Mem
Fragment Raster- _
! Geometry [ization
Display
GPU

[1:GPU

Rage 128

RAGE™ 128

128-bie 20
Engine

DVINHDD
Decoder

Video Engine

Concurent Command Engine

Host Bus Interface

VIGA Graphics
B Coneller

Triangle Setup Engine M Videoto || EEEU
8KB Texture Cache Interface 4

Renderer Renderer

BKB Pixel Cache

Harcharare Cursor

eihe
ﬁqhh Stream ; F:TJ

Video Sircam

Memory Contraller and Interface

/ OPTIONAL Y,
“DISPL ;,,-,' _EEFROM)
| Y il

o EI.' ORY_/

[1:GPU

-

NVIDIA GeForce 6800 3D Pipeline 9
oot (Verex)
] I !

I | I |
v
Trianglf Setup

—— I AT <> Shader Instrucl:tion Dispatch

Memory

Partition Partition

mG PU Courtesy Nick Triantos, NVIDIA

Programmable Pipeline

Object Space Application Texture Spaces

Command

Per-Surface

Tessellation
Per-Texel Texture
Per-Vertex Memory
Image Space Primitive Assembly

Per-Primitive

Rasterization

FB Pixel Ops Per-Fragment

Image Composition?

Per-Pixel

Display

hﬂl‘l P U [From Akeley and Hanrahan, Real-Time Graphics Architectures]

Generalizing the Pipeline

e Transform A to B

- Ex: Rasterization (triangles
to fragments)

- Historically fixed function

e« Process Ato A
- Ex: Fragment program

- Recently programmable,
Process A to and becoming more so
A

Transform A
toB

[1:GPU

GeForce 8800 GPU

® Built around
programmable units

® Unified shader

Input Assembler

Thread Execution Manager

Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors

Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data
Cache Cache Cache Cache Cache Cache Cache Cache

EEG PU [courtesy of lan Buck, NVIDIA]

Unified Shaders

Appllcl:atlon Application/
—Mem
Command Command (CPU)
T v
Verltex Command | | PP M=
Geometry !
l <>
Rasterization Programmable
v Mem
Fragment i
l ¢
Dj Spl ay Rasterization

GPU

[1:GPU

Towards Programmable Graphics

e Fixed function
- Configurable, but not programmable

e« Programmable shading
- Shader-centric
- Programmable shaders, but fixed pipeline

e Programmable graphics
- Customize the pipeline

- Neoptica asserts the major obstacle is programming
models and tools

http://www.neoptica.com/NeopticaWhitepaper.pdf
http://www.graphicshardware.org/previous/www_2006/presentations/pharr-keynote-gh06.pdf

[1:GPU

Yesterday’s Vendor Support

High-Level Graphics Language

OpenGL o D3D o

Low-Level Device Driver

[1:GPU

Today’s New Vendor Support

High-Level Graphics La

OpenGL o

D3D o

Low-Level Device D

CTM CAL
. CTM HAL

[14GPU

Architecture Summary

 GPU is a massively parallel architecture
- Many problems map well to GPU-style computing
- GPUs have large amount of arithmetic capability
- Increasing amount of programmability in the pipeline

 New features map well to GPGPU
- Unified shaders
- Direct access to compute units in hew APIs

e Challenge:

- How do we make the best use of GPU hardware?

e Techniques, programming models, languages,
evaluation tools ...

[1:GPU

