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Why? [Architecture Reasons]

e ILP increasingly difficult to extract from
instruction stream

e Control hardware dominates pyprocessors
- Complex, difficult to build and verify
- Takes substantial fraction of die
- Scales poorly

e Pay for max throughput, sustain average throughput
« Quadratic dependency checking

- Control hardware doesn’t do any math!

e Intel Core Duo: 48 GFLOPS, ~10 GB/s
o NVIDIA G80: 330 GFLOPS, 80+ GB/s
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Why? [Technology Reasons]

e Industry moving from “instructions per
second” to “instructions per watt”
- “Power wall” now all-important
- Traditional pproc techniques are not power-efficient

« We can continue to put more transistors on
a chip ...

- ... but we can’t scale their voltage like we used to ...
- ... and we can’t clock them as fast ...
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Go Parallel

« Time of architectural
innovation

- GPUs let us explore using
hundreds of processors now, not
10 years from now

e Major CPU vendors
supporting multicore

e Interest in general-purpose
programmability on GPUs

e Universities must teach
thinking in parallel
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What’s Different about the GPU?

e The future of the desktop is parallel
- We just don’t know what kind of parallel

e GPUs and multicore are different

- Multicore: Coarse, heavyweight threads, better
performance per thread

- GPUs: Fine, lightweight threads, single-thread
performance is poor

e A case for the GPU

- Interaction with the world is visual
- GPUs have a well-established programming model
- Market for GPUs is 500M+ total/year
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The Rendering Pipeline
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GPU

Compute 3D geometry
Make calls to graphics API

Transform geometry from 3D to
2D (in parallel)

Generate fragments from 2D
geometry (in parallel)
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The Programmable Pipeline
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Compute 3D geometry
Make calls to graphics API

Transform geometry from 3D to
2D [vertex programs]

Generate fragments from 2D
geometry [fragment programs]|
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DirectX 10 Pipeline
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Characteristics of Graphics

e Large computational requirements

e Massive parallelism

- Graphics pipeline designed for independent
operations

e Long latencies tolerable
 Deep, feed-forward pipelines
« Hacks are OK—can tolerate lack of accuracy

e« GPUs are good at parallel, arithmetically
intense, streaming-memory problems
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Graphics Hardware—Task Parallel
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Programmable Pipeline
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Generalizing the Pipeline

e Transform A to B

- Ex: Rasterization (triangles
to fragments)

- Historically fixed function

e« Process Ato A
- Ex: Fragment program

- Recently programmable,
Process A to and becoming more so
A

Transform A
toB
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GeForce 8800 GPU

® Built around
programmable units

® Unified shader

Input Assembler

Thread Execution Manager

Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors Thread Processors

Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data Parallel Data
Cache Cache Cache Cache Cache Cache Cache Cache
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Unified Shaders
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Towards Programmable Graphics

e Fixed function
- Configurable, but not programmable

e« Programmable shading
- Shader-centric
- Programmable shaders, but fixed pipeline

e Programmable graphics
- Customize the pipeline

- Neoptica asserts the major obstacle is programming
models and tools

http://www.neoptica.com/NeopticaWhitepaper.pdf
http://www.graphicshardware.org/previous/www_2006/presentations/pharr-keynote-gh06.pdf
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Yesterday’s Vendor Support

High-Level Graphics Language

OpenGL o D3D o

Low-Level Device Driver
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Today’s New Vendor Support

High-Level Graphics La

OpenGL o

D3D o

Low-Level Device D

CTM CAL
. CTM HAL
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Architecture Summary

 GPU is a massively parallel architecture
- Many problems map well to GPU-style computing
- GPUs have large amount of arithmetic capability
- Increasing amount of programmability in the pipeline

 New features map well to GPGPU
- Unified shaders
- Direct access to compute units in hew APIs

e Challenge:

- How do we make the best use of GPU hardware?

e Techniques, programming models, languages,
evaluation tools ...
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