
Modern GPU Architecture

CSE 694G
Game Design and Project

Prof. Roger Crawfis

GPU vs CPU

 A GPU is tailored for highly parallel operation while a
CPU executes programs serially

 For this reason, GPUs have many parallel execution
units and higher transistor counts, while CPUs have
few execution units and higher clockspeeds

 A GPU is for the most part deterministic in its
operation (though this is quickly changing)

 GPUs have much deeper pipelines (several thousand
stages vs 10-20 for CPUs)

 GPUs have significantly faster and more advanced
memory interfaces as they need to shift around a lot
more data than CPUs

The GPU pipeline

 The GPU receives geometry information

from the CPU as an input and provides a

picture as an output

 Let’s see how that happens

host

interface

vertex

processing

triangle

setup

pixel

 processing

memory

interface

Host Interface

 The host interface is the communication bridge

between the CPU and the GPU

 It receives commands from the CPU and also pulls

geometry information from system memory

 It outputs a stream of vertices in object space with all

their associated information (normals, texture

coordinates, per vertex color etc)

host

interface

vertex

processing

triangle

setup

pixel

 processing

memory

interface

Vertex Processing

 The vertex processing stage receives vertices from the

host interface in object space and outputs them in

screen space

 This may be a simple linear transformation, or a

complex operation involving morphing effects

 Normals, texcoords etc are also transformed

 No new vertices are created in this stage, and no

vertices are discarded (input/output has 1:1 mapping)

host

interface

vertex

processing

triangle

setup

pixel

 processing

memory

interface

Triangle setup

 In this stage geometry information becomes raster

information (screen space geometry is the input, pixels

are the output)

 Prior to rasterization, triangles that are backfacing or

are located outside the viewing frustrum are rejected

 Some GPUs also do some hidden surface removal at

this stage

host

interface

vertex

processing

triangle

setup

pixel

 processing

memory

interface

Triangle Setup (cont)

 A fragment is generated if and only if

its center is inside the triangle

 Every fragment generated has its

attributes computed to be the

perspective correct interpolation of the

three vertices that make up the

triangle

host

interface

vertex

processing

triangle

setup

pixel

 processing

memory

interface

Fragment Processing

 Each fragment provided by triangle setup is fed into

fragment processing as a set of attributes (position,

normal, texcoord etc), which are used to compute the

final color for this pixel

 The computations taking place here include texture

mapping and math operations

 Typically the bottleneck in modern applications

host

interface

vertex

processing

triangle

setup

pixel

 processing

memory

interface

Memory Interface

 Fragment colors provided by the previous stage are

written to the framebuffer

 Used to be the biggest bottleneck before fragment

processing took over

 Before the final write occurs, some fragments are

rejected by the zbuffer, stencil and alpha tests

 On modern GPUs, z and color are compressed to

reduce framebuffer bandwidth (but not size)

host

interface

vertex

processing

triangle

setup

pixel

 processing

memory

interface

Programmability in the GPU

 Vertex and fragment processing, and now triangle set-

up, are programmable

 The programmer can write programs that are executed

for every vertex as well as for every fragment

 This allows fully customizable geometry and shading

effects that go well beyond the generic look and feel of

older 3D applications

host

interface

vertex

processing

triangle

setup

pixel

 processing

memory

interface

Diagram of a modern GPU

64bits to

memory

64bits to

memory

64bits to

memory

64bits to

memory

Input from CPU

Host interface

Vertex processing

Triangle setup

Pixel processing

Memory Interface

CPU/GPU interaction

 The CPU and GPU inside the PC work in parallel with

each other

 There are two ―threads‖ going on, one for the CPU and

one for the GPU, which communicate through a

command buffer:

CPU writes commands here

GPU reads commands from here

Pending GPU commands

CPU/GPU interaction (cont)

 If this command buffer is drained empty, we are CPU

limited and the GPU will spin around waiting for new

input. All the GPU power in the universe isn’t going to

make your application faster!

 If the command buffer fills up, the CPU will spin

around waiting for the GPU to consume it, and we are

effectively GPU limited

CPU/GPU interaction (cont)

 Another important point to consider is that programs

that use the GPU do not follow the traditional

sequential execution model

 In the CPU program below, the object is not drawn

after statement A and before statement B:

 Instead, all the API call does, is to add the command

to draw the object to the GPU command buffer

•Statement A

•API call to draw object

•Statement B

Synchronization issues

 This leads to a number of synchronization

considerations

 In the figure below, the CPU must not overwrite the

data in the ―yellow‖ block until the GPU is done with

the ―black‖ command, which references that data:

CPU writes commands here

GPU reads commands from here

data

Syncronization issues (cont)

 Modern APIs implement semaphore style operations
to keep this from causing problems

 If the CPU attempts to modify a piece of data that is
being referenced by a pending GPU command, it will
have to spin around waiting, until the GPU is finished
with that command

 While this ensures correct operation it is not good for
performance since there are a million other things
we’d rather do with the CPU instead of spinning

 The GPU will also drain a big part of the command
buffer thereby reducing its ability to run in parallel with
the CPU

Inlining data

 One way to avoid these problems is to inline all data to
the command buffer and avoid references to separate
data:

 However, this is also bad for performance, since we
may need to copy several Mbytes of data instead of
merely passing around a pointer

CPU writes commands here

GPU reads commands from here

data

Renaming data

 A better solution is to allocate a new data block and
initialize that one instead, the old block will be deleted
once the GPU is done with it

 Modern APIs do this automatically, provided you
initialize the entire block (if you only change a part of
the block, renaming cannot occur)

 Better yet, allocate all your data at startup and don’t
change them for the duration of execution (not always
possible, however)

data data data data

GPU readbacks

 The output of a GPU is a rendered image on the

screen, what will happen if the CPU tries to read it?

 The GPU must be syncronized with the CPU, ie it

must drain its entire command buffer, and the CPU

must wait while this happens

CPU writes commands here

GPU reads commands from here

Pending GPU commands

GPU readbacks (cont)

 We lose all parallelism, since first the CPU waits for

the GPU, then the GPU waits for the CPU (because

the command buffer has been drained)

 Both CPU and GPU performance take a nosedive

 Bottom line: the image the GPU produces is for your

eyes, not for the CPU (treat the CPU -> GPU highway

as a one way street)

Some more GPU tips

 Since the GPU is highly parallel and deeply pipelined,

try to dispatch large batches with each drawing call

 Sending just one triangle at a time will not occupy all

of the GPU’s several vertex/pixel processors, nor will it

fill its deep pipelines

 Since all GPUs today use the zbuffer algorithm to do

hidden surface removal, rendering objects front-to-

back is faster than back-to-front (painters algorithm),

or random ordering

 Of course, there is no point in front-to-back sorting if

you are already CPU limited

Graphics Hardware Abstraction

 OpenGL and DirectX provide an

abstraction of the hardware.

CS248 Lecture 14 Kurt Akeley, Fall 2007

Trend from pipeline to data parallelism

Command
Processor

Round-robin
Aggregation

Coord, normal

Transform

Lighting

Clip testing

Clipping state

Divide by w

(clipping)

Viewport

Prim. Assy.

Backface cull

Coordinate

Transform

6-plane

Frustum

Clipping

Divide by w

Viewport

Clark “Geometry Engine”

(1983)

SGI 4D/GTX

(1988)
SGI RealityEngine

(1992)

CS248 Lecture 14 Kurt Akeley, Fall 2007

Queueing

FIFO buffering (first-in, first-out) is
provided between task stages

 Accommodates variation in
execution time

 Provides elasticity to allow unified
load balancing to work

FIFOs can also be unified

 Share a single large memory with
multiple head-tail pairs

 Allocate as required

Vertex assembly

Primitive assembly

Vertex operations

Application

FIFO

FIFO

FIFO

CS248 Lecture 14 Kurt Akeley, Fall 2007

Data locality

Prior to texture mapping:

 Vertex pipeline was a stream processor

 Each work element (vertex, primitive,
fragment) carried all the state it needed

 Modal state was local to the pipeline
stage

 Assembly stages operated on adjacent
work elements

 Data locality was inherent in this model

Post texture mapping:

 All application-programmable stages
have memory access (and use them)

 So the vertex pipeline is no longer a
stream processor

 Data locality must be fought for …

Vertex assembly

Primitive assembly

Rasterization

Fragment operations

Display

Vertex operations

Application

Primitive operations

Framebuffer

CS248 Lecture 14 Kurt Akeley, Fall 2007

Post-texture mapping data locality

(simplified)

Modern memory (DRAM) operates in large
blocks

 Memory is a 2-D array

 Access is to an entire row

To make efficient use of memory bandwidth
all the data in a block must be used

Two things can be done:

 Aggregate read and write requests

 Memory controller and cache

 Complex part of GPU design

 Organize memory contents
coherently (blocking)

The nVidia G80 GPU

► 128 streaming floating point processors @1.5Ghz

► 1.5 Gb Shared RAM with 86Gb/s bandwidth

► 500 Gflop on one chip (single precision)

 Entertainment Industry has driven the

economy of these chips?

 Males age 15-35 buy

$10B in video games / year

 Moore’s Law ++

 Simplified design (stream processing)

 Single-chip designs.

Why are GPU’s so fast?

Modern GPU has more ALU’s

nVidia G80 GPU

Architecture Overview

•16 Multiprocessors Blocks

•Each MP Block Has:

•8 Streaming Processors
(IEEE 754 spfp
compliant)

•16K Shared Memory

•64K Constant Cache

•8K Texture Cache

•Each processor can access
all of the memory at 86Gb/s,
but with different latencies:

•Shared – 2 cycle latency

•Device – 300 cycle latency

A Specialized Processor

 Very Efficient For
 Fast Parallel Floating Point Processing

 Single Instruction Multiple Data Operations

 High Computation per Memory Access

 Not As Efficient For
 Double Precision

 Logical Operations on Integer Data

 Branching-Intensive Operations

 Random Access, Memory-Intensive Operations

CS248 Lecture 14 Kurt Akeley, Fall 2007

Implementation = abstraction (from lecture 2)

L2

FB

SP SP

L1

TF

T
h

re
a

d
 P

ro
c

e
s

s
o

r

Vtx Thread Issue

Setup / Rstr / ZCull

Prim Thread Issue Frag Thread Issue

Data Assembler

Application

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

Vertex assembly

Primitive assembly

Rasterization

Fragment operations

Vertex operations

Application

Primitive operations

NVIDIA GeForce 8800 OpenGL Pipeline

Framebuffer

Source : NVIDIA

CS248 Lecture 14 Kurt Akeley, Fall 2007

Correspondence (by color)

L2

FB

SP SP

L1

TF

T
h

re
a

d
 P

ro
c

e
s

s
o

r

Vtx Thread Issue

Setup / Rstr / ZCull

Prim Thread Issue Frag Thread Issue

Data Assembler

Application

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

Vertex assembly

Primitive assembly

Rasterization
(fragment assembly)

Fragment operations

Vertex operations

Application

Primitive operations

NVIDIA GeForce 8800 OpenGL Pipeline

Framebuffer

this was missing

Application-

programmable

parallel

processor

Fixed-function assembly

processors

Fixed-function

framebuffer

operations

CS248 Lecture 14 Kurt Akeley, Fall 2007

Texture Blocking

4x4 texels

Cache Line Size Cache Size 6D Organization

(s2,t2) (s1,t1) (s3,t3)

s1 t1 s2 t2 s3 t3 base Address

4x4 blocks

Source: Pat Hanrahan

Direct3D 10 System

and

NVIDIA GeForce 8800 GPU

Overview

 Before graphics-programming APIs were introduced, 3D applications issued
their commands directly to the graphics hardware

 Fast

 Became infeasible with increasing graphics hardware

 Graphics APIs like DirectX and OpenGL act as a middle layer between the
application and the graphics hardware

 Using this model, applications write one set of code and the API does the job
of translating this code to instructions that can be understood by the
underlying hardware

 A product of detailed collaboration among

 Application developers

 Hardware designers

 API/runtime architects

Problems with Earlier Versions

 High state-change overhead

 Changing state (in terms of vertex formats, textures, shaders, shader parameters,

blending modes etc.) incurs a high overhead

 Excessive variation in hardware accelerator capabilities

 Frequent CPU and GPU synchronization

 Generating new vertex data or building a cube map requires more

communication, reducing efficiency

 Instruction type and data type limitations

 Neither vertex nor pixel shader supports integer instructions

 Pixel shader accuracy for FP arithmetic can be improved

 Resource Limitations

 The resources sizes were modest

 Algorithms had to be scaled back or broken into several passes

Main Features of DirectX 10

 Main objective is to reduce CPU overhead

 Some of the key changes are:

 Faster and cleaner runtime

 Programmable pipeline is directed using a low-level abstraction layer

 called Runtime. It hides the differences between varying applications and

provides device-independent resource management

 The runtime of DirectX 10 has been redesigned to work more closely with

the graphics hardware

 The GeForce 8800 architecture has been designed keeping in mind the

changes in Runtime

 Treatment of validation enhances performance

Main Features of DirectX 10

 New Data Structure for Texture

 Switching between multiple textures causes high state-change cost

 DirectX 9 used to use texture atlas : but the approach was limited to
4096x4096 and resulted in incorrect filtering at texture boundaries

 DirectX 10 uses texture array : up to 512 textures can be stored
sequentially

 Texture resolution extended to 8192x8192

 Maximum number of textures a shader can use is 128 (was 16)

 The instructions handling this array are executed by GPU

 Predicted Draw

 Complex objects are first drawn using a simple box approximation. If
drawing the box has no effect on the final image, the complex object is
not drawn at all. This is also known as an occlusion query

 With DirectX 10, this process is done entirely on the GPU, eliminating
all CPU intervention

Main Features of DirectX 10

 Stream Out

 The vertex or geometry shader can output their results
directly into graphics memory, bypassing the pixel shader

 Result can be iteratively processed in the GPU only

 State Object

 State management must be done in low cost

 Huge range of states in DirectX 9 is consolidated into 5
state objects: InputLayout, Sampler, Rasterizer,
DepthStencil, Blend

 State changes that previously required multiple commands
now need a single call

Main Features of DirectX 10

 Constant Buffers

 Constants are pre-defined values used as parameters in all shader

programs

 Constants often require updating to reflect world changes

 Constant update produce significant API overhead

 DirectX 10 updates constants in batch mode

 New HDR Formats

 R11G11B10

 RGBE

 Offer same dymamic range as FP16, but takes half storage

 Max limit is 32 bits per color component : 8800 supports this high-

precision rendering

Quick Comparison to DirectX 9

The Pipeline

 Input Assembler

 Vertex Shader

 Geometry Shader

 Stream Output

 Set-up and
Rasterization stage

 Pixel Shader

 Output Merger

A Simplified Diagram

Relation to 8800 GPU

 The pipeline can make efficient use of Unified

Shader Architecture of 8800 GPU

8800 GPU Architecture

Unified Shader Architecture

Unified Shader Architecture

Fixed Shader Unified Shader

Back to Pipeline : Input Assembler

 Takes in 1D vertex data from up

to 8 input streams

 Converts data to a canonical

format

 supports a mechanism that allows

the IA to effectively replicate an

object n times - instancing

Vertex Shader

 Used to transform vertices from
object space to clip space.

 Reads a single vertex and produces
a single vertex as output

 VS and other programmable stages
share a common feature set that
includes an expanded set of
floating-point, integer, control, and
memory read instructions allowing
access to up to 128 memory
buffers (textures) and 16 parameter
(constant) buffers - common core

Geometry Shader

 Takes the vertices of a single primi-
tive (point, line segment, or triangle)
as input and generates the vertices of
zero or more primitives

 Triangles and lines are output as
connected strips of vertices

 Additional vertices can be
generated on-the-fly , allowing
displacement mapping

 Geometry shader has the ability to
access the adjacency information

 This enables implementation of some
new powerful algorithms :

 Realistic fur rendering

 NPR rendering

Stream Output

 Copies a subset of the vertex informa-

tion to up to 4 1D output buffers in

sequential order

 Ideally the output data format of SO

should be identical to the input data

format of IA

 But practically SO writes 32 bit data

type while IA reads 8 or 16 bit

 Data conversion and packing can be

implemented by a GS program

Relation to 8800 GPU

 Key to the GeForce 8800 architecture is the use
of numerous scalar stream processors (SPs)

 Stream processors are highly efficient computing
engines that perform calculations on an input
stream and produces an output stream that can
be used by other stream processors

 Stream processors can be grouped in close
proximity, and in large numbers, to provide
immense parallel processing power.

Stream Processing Architecture

Unified FP Processor

Set-up and Rasterization Stage

 Input to this stage is vertices

 Output from this stage is a series of

pixel fragments

 Handles following operations:

 Clipping

 Culling

 Perspective divide

 View port transform

 Primitive set-up

 Scissoring

 Depth offset

 Depth processing like hierarchical-z

 Fragment generation

Pixel Shader

 Input is a single pixel fragment

 Produces a single output
fragment consisting of 1-8
attribute values and an optional
depth value

 If the fragment is supposed to
be rendered, its output to 8
render targets

 Each target represent a different
representation of the scene

Output Merger

 Input is a fragment from the

pixel shader

 Performs traditional stencil and

depth testing

 Uses a single unified

depth/stencil buffer to specify

the bind points for this buffer

and 8 other render targets

 Degree of multiple rendering

enhanced to 8

Shader Model 4.0

Architectural Changes in

Shader Model 4.0

 In previous models, each programmable stage of

the pipeline used separate virtual machines

 Each VM had its own

 Instruction set

 General purpose registers

 I/O registers for inter-stage communication

 Resource binding points for attaching memory

resources

Architectural Changes in

Shader Model 4.0
 Direct3D 10 defines a single common core virtual machine as the

base for each of the programmable stages

 In addition to the previous resources, it also has:

 32-bit integer (arithmetic, bitwise, and conversion)
instructions

 Unified pool of general purpose and indexable registers
(4096x4)

 Separate unfiltered and filtered memory read instructions
(load and sample instructions)

 Decoupled texture bind points (128) and sampler state (16)

 Shadow map sampling support • multiple banks (16) of
constant (parameter) buffers (4096x4)

Diagram

Advantages of Shader Model 4.0

 VM is close to providing all of the arithmetic, logic and flow control

constructs available on a CPU

 Resources have been substantially increased to meet the market demand for

several years

 With increasing resource consumption, hardware implementations are

expected to degrade linearly, not fall rapidly

 Can handle increase in constant storage as well as efficient update of

constants

 The observation that groups of constants are updated at different frequencies

 So they partition the constant store into different buffers

 The data representation, arithmetic accuracy and behavior is more rigorously

specified – they follow IEEE 754 single precision floating point

representation where it is possible

Power of DirectX 10

 Next Generation Effects

 Next-Generation Instancing

 Per-pixel Displacement Mapping

 Procedural Growth Simulation

Conclusions

 A large step forward

 Particularly geometry shader and stream output

should become rich source of new ideas

 Future work is directed to handle the growing

bottleneck in content production

Introduction to the graphics

pipeline of the PS3

: : Cedric Perthuis

Introduction

 An overview of the hardware architecture with a

focus on the graphics pipeline, and an

introduction to the related software APIs

 Aimed to be a high level overview for academics

and game developers

 No announcement and no sneak previews of

PS3 games in this presentation

Outline

 Platform Overview

 Graphics Pipeline

 APIs and tools

 Cell Computing example

 Conclusion

Platform overview

 Processing

 3.2Ghz Cell: PPU and 7 SPUs

 PPU: PowerPC based, 2 hardware threads

 SPUs: dedicated vector processing units

 RSX®: high end GPU

 Data flow

 IO: BluRay, HDD, USB, Memory Cards, GigaBit

ethernet

 Memory: main 256 MB, video 256 MB

 SPUs, PPU and RSX® access main via shared bus

 RSX® pulls from main to video

Cell
3.2 GHz

RSX® XDRAM
256 MB

I/O
Bridge

HD/HD
SD

AV out

20GB/s

15GB/s

25.6GB/s

2.5GB/s

2.5GB/s

BD/DVD/CD
ROM Drive

54GB USB 2.0 x 6

Gbit Ether/WiFi Removable Storage
MemoryStick,SD,CF

BT Controller

GDDR3
256 MB

22.4GB/s

PS3 Architecture

Focus on the Cell SPUs

 The key strength of the PS3

 Similar to PS2 Vector Units, but order of magnitude

more powerful

 Main Memory Access via DMA: needs software

cache to do generic processing

 Programmable in C/C++ or assembly

 Programs: standalone executables or jobs

 Ideal for sound, physics, graphics data

preprocessing, or simply to offload the PPU

SPE0

LS

(256KB)

DMA

SPE1

LS

(256KB)

DMA

MIC

Memory

Interface

Controller

XIO

SPE2

LS

(256KB)

DMA

SPE3

LS

(256KB)

DMA

SPE4

LS

(256KB)

DMA

SPE5

LS

(256KB)

DMA

SPE6

LS

(256KB)

DMA

PPE

L1 (32 KB I/D)

L2

(512 KB)

Flex-

IO1

Flex-

IO0

I/O

I/O

I/O

The Cell Processor

The RSX® Graphics Processor

 Based on a high end NVidia chip

 Fully programmable pipeline: shader model 3.0

 Floating point render targets

 Hardware anti-aliasing (2x, 4x)

 256 MB of dedicated video memory

 PULL from the main memory at 20 GB/s

 HD Ready (720p/1080p)

 720p = 921 600 pixels

 1080p = 2 073 600 pixels

 a high end GPU adapted to work with the Cell

Processor and HD displays

The RSX® parallel pipeline

 Command processing

 Fifo of commands, flip and sync

 Texture management

 System or video memory

 storage mode, compression

 Vertex Processing

 Attribute fetch, vertex program

 Fragment Processing

 Zcull, Fragment program, ROP

Xbox 360

512 MB system memory

IBM 3-way symmetric core processor

ATI GPU with embedded EDRAM

12x DVD

Optional Hard disk

The Xbox 360 GPU

Custom silicon designed by ATi
Technologies Inc.

500 MHz, 338 million transistors, 90nm
process

Supports vertex and pixel shader version
3.0+

Includes some Xbox 360 extensions

The Xbox 360 GPU

10 MB embedded DRAM (EDRAM) for
extremely high-bandwidth render targets

Alpha blending, Z testing, multisample antialiasing
are all free (even when combined)

Hierarchical Z logic and dedicated memory
for early Z/stencil rejection

GPU is also the memory hub for the whole
system

22.4 GB/sec to/from system memory

More About the Xbox 360 GPU

48 shader ALUs shared between pixel
and vertex shading (unified shaders)

Each ALU can co-issue one float4 op and
one scalar op each cycle

Non-traditional architecture

16 texture samplers

Dedicated Branch instruction
execution

More About the Xbox 360 GPU

2x and 4x hardware multi-sample anti-
aliasing (MSAA)

Hardware tessellator
N-patches, triangular patches, and
rectangular patches

Can render to 4 render targets and a
depth/stencil buffer simultaneously

GPU: Work Flow

Consumes instructions and data from a
command buffer

Ring buffer in system memory

Managed by Direct3D, user configurable size
(default 2 MB)

Supports indirection for vertex data, index data,
shaders, textures, render state, and command
buffers

Up to 8 simultaneous contexts in-flight at
once

Changing shaders or render state is inexpensive,
since a new context can be started up easily

GPU: Work Flow

Threads work on units of 64 vertices or
pixels at once

Dedicated triangle setup, clipping, etc.

Pixels processed in 2x2 quads

Back buffers/render targets stored in
EDRAM

Alpha, Z, stencil test, and MSAA expansion done
in EDRAM module

EDRAM contents copied to system
memory by ―resolve‖ hardware

GPU: Operations Per Clock

Write 8 pixels or 16 Z-only pixels to
EDRAM

With MSAA, up to 32 samples or 64 Z-only
samples

Reject up to 64 pixels that fail
Hierarchical Z testing

Vertex fetch sixteen 32-bit words from
up to two different vertex streams

GPU: Operations Per Clock

16 bilinear texture fetches

48 vector and scalar ALU operations

Interpolate 16 float4 shader
interpolants

32 control flow operations

Process one vertex, one triangle

Resolve 8 pixels to system memory
from EDRAM

GPU: Hierarchical Z

Rough, low-resolution representation
of Z/stencil buffer contents

Provides early Z/stencil rejection for
pixel quads

11 bits of Z and 1 bit of stencil per
block

GPU: Hierarchical Z

NOT tied to compression

EDRAM BW advantage

Separate memory buffer on GPU

Enough memory for 1280x720 2x MSAA

Provides a big performance boost
when drawing complex scenes

Draw opaque objects front to back

GPU: Textures

16 bilinear texture samples per clock

64bpp runs at half rate, 128bpp at quarter rate

Trilinear at half rate

Unlimited dependent texture fetching

DXT decompression has 32 bit precision

Better than Xbox (16-bit precision)

GPU: Resolve

Copies surface data from EDRAM to a
texture in system memory

Required for render-to-texture and
presentation to the screen

Can perform MSAA sample averaging
or resolve individual samples

Can perform format conversions and
biasing

Direct3D 9+ on Xbox 360

Similar API to PC Direct3D 9.0

Optimized for Xbox 360 hardware

No abstraction layers or drivers—it’s direct
to the metal

Exposes all Xbox 360 custom hardware
features

New state enums

New APIs for finer-grained control and
completely new features

Direct3D 9+ on Xbox 360

Communicates with GPU via a
command buffer

Ring buffer in system memory

Direct Command Buffer Playback support

Direct3D: Command Buffer

Ring buffer that allows the CPU to safely
send commands to the GPU

Buffer is filled by CPU, and the GPU
consumes the data

CPU Write Pointer

GPU Read Pointer

Code

Execution
Draw

Draw

Draw

Draw

Rendering

Shaders

Two options for writing shaders

HLSL (with Xbox 360 extensions)

GPU microcode (specific to the Xbox 360
GPU, similar to assembly but direct to
hardware)

Recommendation: Use HLSL

Easy to write and maintain

Replace individual shaders with microcode
if performance analysis warrants it

