
Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture © NVIDIA Corporation 2007

GPU Parallel Computing Architecture

and CUDA Programming Model

John Nickolls

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture2

Outline

Why GPU Computing?

GPU Computing Architecture

Multithreading and Thread Arrays

Data Parallel Problem Decomposition

Parallel Memory Sharing

Transparent Scalability

CUDA Programming Model

CUDA: C on the GPU

CUDA Example

Applications

Summary

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture3

Parallel Computing on a GPU

NVIDIA GPU Computing Architecture
is a scalable parallel computing platform

In laptops, desktops, workstations, servers

8-series GPUs deliver 50 to 200 GFLOPS
on compiled parallel C applications

GPU parallel performance pulled by the
insatiable demands of PC game market

GPU parallelism is doubling every year

Programming model scales transparently

Programmable in C with CUDA tools

Multithreaded SPMD model uses application
data parallelism and thread parallelism

GeForce 8800

Tesla S870

Tesla D870

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture4

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

L2

Memory

Work DistributionHost CPU

L2

Memory

L2

Memory

L2

Memory

L2

Memory

L2

Memory

NVIDIA 8-Series GPU Computing

Massively multithreaded parallel computing platform

12,288 concurrent threads, hardware managed

128 Thread Processor cores at 1.35 GHz == 518 GFLOPS peak

GPU Computing features enable C on Graphics Processing Unit

SP

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture5

SM Multithreaded Multiprocessor

SM has 8 SP Thread Processors

32 GFLOPS peak at 1.35 GHz

IEEE 754 32-bit floating point

32-bit integer

Scalar ISA

Memory load/store

Texture fetch

Branch, call, return

Barrier synchronization instruction

Multithreaded Instruction Unit

768 Threads, hardware multithreaded

24 SIMD warps of 32 threads

Independent MIMD thread execution

Hardware thread scheduling

16KB Shared Memory

Concurrent threads share data

Low latency load/store

Texture L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

SP

Shared
Memory

MT IU

SM

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture6

SM SIMD Multithreaded Execution

Weaving: the original parallel thread

technology is about 10,000 years old

Warp: the set of 32 parallel threads

that execute a SIMD instruction

SM hardware implements zero-overhead

warp and thread scheduling

Each SM executes up to 768 concurrent

threads, as 24 SIMD warps of 32 threads

Threads can execute independently

SIMD warp diverges and converges when

threads branch independently

Best efficiency and performance when

threads of a warp execute together

SIMD across threads (not just data) gives

easy single-thread scalar programming

with SIMD efficiency

warp 8 instruction 11

SM multithreaded
instruction scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

time

warp 3 instruction 96

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture7

Programmer Partitions Problem

with Data-Parallel Decomposition

CUDA Programmer partitions
problem into Grids, one Grid
per sequential problem step

Programmer partitions Grid
into result Blocks computed
independently in parallel

GPU thread array computes
result Block

Programmer partitions Block
into elements computed
cooperatively in parallel

GPU thread computes result
element

GPU
Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Grid 2

Sequence

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

Step 1:

Step 2:

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture8

Cooperative Thread Array
CTA Implements CUDA Thread Block

A CTA is an array of concurrent threads
that cooperate to compute a result

A CUDA thread block is a CTA

Programmer declares CTA:

CTA size 1 to 512 concurrent threads

CTA shape 1D, 2D, or 3D

CTA dimensions in threads

CTA threads execute thread program

CTA threads have thread id numbers

CTA threads share data and synchronize

Thread program uses thread id to select
work and address shared data

CTA
CUDA Thread Block

Thread Id #:
0 1 2 3 … m

Thread program

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture9

SM Multiprocessor Executes CTAs

CTA threads run concurrently

SM assigns thread id #s

SM manages thread execution

CTA threads share data & results

In Memory and Shared Memory

Synchronize at barrier instruction

Per-CTA Shared Memory

Keeps data close to processor

Minimize trips to global Memory

CTA threads access global Memory

76 GB/sec GDDR DRAM

t0 t1 t2 … tm

CTA 0

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

CTA 1

SM 1SM 0

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture10

Data Parallel Levels

Thread

Computes result elements

Thread id number

CTA – Cooperative Thread Array

Computes result Block

1 to 512 threads per CTA

CTA (Block) id number

Grid of CTAs

Computes many result Blocks

1 to many CTAs per Grid

Sequential Grids

Compute sequential problem steps

Thread

t0 t1 t2 … tm

CTA

Grid

CTA 0 CTA 1 CTA 2 CTA n

. . .

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture11

Parallel Memory Sharing

Local Memory: per-thread

Private per thread

Auto variables, register spill

Shared Memory: per-CTA

Shared by threads of CTA

Inter-thread communication

Global Memory: per-application

Shared by all threads

Inter-Grid communication

Thread

Local Memory

Grid 0

. . .

Global
Memory

. . .

Grid 1

Sequential

Grids

in Time

CTA

Shared
Memory

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture12

How to Scale GPU Computing?

GPU parallelism varies widely

Ranges from 8 cores to many 100s of cores

Ranges from 100 to many 1000s of threads

GPU parallelism doubles yearly

Graphics performance scales with GPU parallelism

Data parallel mapping of pixels to threads

Unlimited demand for parallel pixel shader threads and cores

Challenge:

Scale Computing performance with GPU parallelism

Program must be insensitive to the number of cores

Write one program for any number of SM cores

Program runs on any size GPU without recompiling

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture13

Transparent Scalability

Programmer uses multi-level data parallel decomposition

Decomposes problem into sequential steps (Grids)

Decomposes Grid into computing parallel Blocks (CTAs)

Decomposes Block into computing parallel elements (threads)

GPU hardware distributes CTA work to available SM cores

GPU balances CTA work load across any number of SM cores

SM core executes CTA program that computes Block

CTA program computes a Block independently of others

Enables parallel computing of Blocks of a Grid

No communication among Blocks of same Grid

Scales one program across any number of parallel SM cores

Programmer writes one program for all GPU sizes

Program does not know how many cores it uses

Program executes on GPU with any number of cores

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture14

CUDA Programming Model:

Parallel Multithreaded Kernels

Execute data-parallel portions of application on

GPU as kernels which run in parallel on many

cooperative threads

Integrated CPU + GPU application C program

Partition problem into a sequence of kernels

Kernel C code executes on GPU

Serial C code executes on CPU

Kernels execute as blocks of parallel threads

View GPU as a computing device that:

Acts as a coprocessor to the CPU host

Has its own memory

Runs many lightweight threads in parallel

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture15

Single-Program Multiple-Data (SPMD)

CUDA integrated CPU + GPU application C program

Serial C code executes on CPU

Parallel Kernel C code executes on GPU thread blocks

CPU Serial Code
Grid 0

. . .

. . .

GPU Parallel Kernel

KernelA<<< nBlk, nTid >>>(args);

Grid 1

CPU Serial Code

GPU Parallel Kernel

KernelB<<< nBlk, nTid >>>(args);

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture16

CUDA Programming Model:

Grids, Blocks, and Threads

Execute a sequence of kernels

on GPU computing device

A kernel executes as a Grid of

thread blocks

A thread block is an array of

threads that can cooperate

Threads within the same block

synchronize and share data in

Shared Memory

Execute thread blocks as CTAs

on multithreaded

multiprocessor SM cores

CPU

Kernel 1

Kernel 2

GPU device
Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Grid 2

Sequence

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture17

CUDA Programming Model:

Thread Memory Spaces

Each kernel thread can read:

Thread Id per thread

Block Id per block

Constants per grid

Texture per grid

Each thread can read and write:

Registers per thread

Local memory per thread

Shared memory per block

Global memory per grid

Host CPU can read and write:

Constants per grid

Texture per grid

Global memory per grid

Thread Id, Block Id

Registers

Constants

Texture

Global Memory

Shared
Memory

Kernel
 Thread
Program

Written in C
Local Memory

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture18

CUDA: C on the GPU

Single-Program Multiple-Data (SPMD) programming model

C program for a thread of a thread block in a grid

Extend C only where necessary

Simple, explicit language mapping to parallel threads

Declare C kernel functions and variables on GPU:

__global__ void KernelFunc(...);
__device__ int GlobalVar;

__shared__ int SharedVar;

Call kernel function as Grid of 500 blocks of 128 threads:

KernelFunc<<< 500, 128 >>>(args ...);

Explicit GPU memory allocation, CPU-GPU memory transfers

cudaMalloc(), cudaFree()

cudaMemcpy(), cudaMemcpy2D(), …

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture19

CUDA C Example: Add Arrays

__global__ void addMatrixG

 (float *a, float *b, float *c, int N)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

int j = blockIdx.y*blockDim.y + threadIdx.y;

int idx = i + j*N;

if (i < N && j < N)

c[idx] = a[idx] + b[idx];

}

void main()

{

dim3 dimBlock (blocksize, blocksize);

dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);

addMatrixG<<<dimGrid, dimBlock>>>(a, b, c, N);

}

void addMatrix

(float *a, float *b, float *c, int N)

{

int i, j, idx;

for (i = 0; i < N; i++) {

 for (j = 0; j < N; j++) {

idx = i + j*N;

c[idx] = a[idx] + b[idx];

 }

}

}

void main()

{

 addMatrix(a, b, c, N);

}

CUDA C programC program

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture20

CUDA Software Development Kit

NVIDIA C Compiler

NVIDIA Assembly
for Computing (PTX)

CPU Host Code

Integrated CPU + GPU
C Source Code

CUDA Optimized Libraries:
FFT, BLAS, …

CUDA
Driver

Debugger
Profiler

Standard C Compiler

GPU CPU

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture21

Compiling CUDA Programs

NVCC

C/C++ CUDA

Application

PTX to Target

Translator

 GPU … GPU

Target code

PTX CodeVirtual

Target

CPU Code

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture22

GPU Computing Application Areas

Computational

Modeling

Computational

Chemistry

Computational

Medicine

Computational

Science

Computational

Biology

Computational

Finance

Computational

Geoscience

Image

Processing

© NVIDIA Corporation 2007Hot Chips 2007: NVIDIA GPU Parallel Computing Architecture23

Summary

NVIDIA GPU Computing Architecture
Computing mode enables parallel C on GPUs

Massively multithreaded – 1000s of threads

Executes parallel threads and thread arrays

Threads cooperate via Shared and Global memory

Scales to any number of parallel processor cores

Now on: Tesla C870, D870, S870, GeForce 8800/8600/8500,
and Quadro FX 5600/4600

CUDA Programming model
C program for GPU threads

Scales transparently to GPU parallelism

Compiler, tools, libraries, and driver for GPU Computing

Supports Linux and Windows

http://www.nvidia.com/Tesla

http://developer.nvidia.com/CUDA

